THE CONVERSE OF EXACT DIVISIBILITY BY POWERS OF THE FIBONACCI AND LUCAS NUMBERS

KRITKHAJOHN ONPHAENG AND PRAPANPONG PONGSRIIAM

Abstract

In 2014, Pongsriiam obtained the results on exact divisibility by powers of the Fibonacci and Lucas numbers. For instance, he proved that if $F_{n}^{k} \| m, n \geq 3$, and $n \not \equiv 3$ $(\bmod 6)$, then $F_{n}^{k+1} \| F_{n m}$. In this article, we give the converse of those theorems.

1. Introduction

Let $\left(F_{n}\right)_{n \geq 1}$ be the Fibonacci sequence defined by $F_{1}=F_{2}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$, and let $\left(L_{n}\right)_{n \geq 1}$ be the Lucas sequence given by $L_{1}=1, L_{2}=3$ with the same recursive pattern as the Fibonacci sequence. We also assume throughout that k, m, and n are positive integers and p is a prime. The exact divisibility $m^{k} \| n$ means that $m^{k} \mid n$ and $m^{k+1} \nmid n$. The order of appearance of n in the Fibonacci sequence, denoted by $z(n)$, is the smallest positive integer k such that $n \mid F_{k}$. The p-adic valuation (or p-adic order) of n, denoted by $v_{p}(n)$, is the exponent of p in the prime factorization of n. So, $v_{p}(n)=k$ if and only if $p^{k} \| n$.

The divisibility property of the Fibonacci numbers and the behavior of the order of appearance have been a popular area of research, see for example in $[6,7,8,9,10,15,18]$ and references therein. In particular, the divisibility by powers of the Fibonacci numbers attracts some attention because it is used in Matiyasevich's solution to Hilbert's 10th problem [11]. For example, Hoggatt and Bicknell-Jonhson [5] show that

$$
\begin{equation*}
\text { if } F_{n}^{k} \mid m \text {, then } F_{n}^{k+1} \mid F_{n m}, \tag{1.1}
\end{equation*}
$$

which is proved again later by Benjamin and Rouse using a different method [1]. In addition, Tangboonduangjit and Wiboonton [29], Panraksa et al. [14], and Onphaeng and Pongsriiam [13] obtain the divisibility by powers of the Fibonacci numbers, in particular subsequences of $\left(F_{n}\right)_{n \geq 1}$. The most general result in this direction is given by Pongsriiam [17] as follows.

Theorem 1.1. [17, Theorem 2] For $n \geq 3$, we have
(i) if $F_{n}^{k} \| m$ and $n \not \equiv 3(\bmod 6)$, then $F_{n}^{k+1} \| F_{n m}$;
(ii) if $F_{n}^{k} \| m, n \equiv 3(\bmod 6)$, and $\frac{F_{n}^{k+1}}{2} \nmid m$, then $F_{n}^{k+1} \| F_{n m}$;
(iii) if $F_{n}^{k} \| m, n \equiv 3(\bmod 6)$, and $\left.\frac{F_{n}^{k+1}}{2} \right\rvert\, m$, then $F_{n}^{k+2} \| F_{n m}$.

Theorem 1.2. [17, Theorem 3] Let m be an odd integer. Then,
(i) if $L_{n}^{k} \mid m$, then $L_{n}^{k+1} \mid L_{n m}$;
(ii) if $n \geq 2$ and $L_{n}^{k} \| m$, then $L_{n}^{k+1} \| L_{n m}$.

Theorem 1.3. [17, Theorem 4] Let m be even and $n \geq 2$. Then, the following statements hold.
(i) If $L_{n}^{k} \mid m$, then $L_{n}^{k+1} \mid F_{n m}$.
(ii) If $L_{n}^{k} \| m$ and $n \not \equiv 0(\bmod 3)$, then $L_{n}^{k+1} \| F_{n m}$.
(iii) If $L_{n}^{k} \| m, n \equiv 0(\bmod 6)$, and $\frac{L_{n}^{k+1}}{2} \nmid m$, then $L_{n}^{k+1} \| F_{n m}$.
(iv) If $L_{n}^{k} \| m, n \equiv 0(\bmod 6)$ and $\left.\frac{L_{n}^{k+1}}{2} \right\rvert\, m$, then $L_{n}^{k+2} \mid F_{n m}$.
(v) If $L_{n}^{k} \| m, n \equiv 3(\bmod 6)$, and $\frac{L_{n}^{k+1}}{4} \nmid m$, then $L_{n}^{k+1} \| F_{n m}$.
(vi) If $L_{n}^{k} \| m, n \equiv 3(\bmod 6)$, and $\left.\frac{L_{n}^{k+1}}{4} \right\rvert\, m$, then $L_{n}^{k+2} \mid 4 F_{n m}$.

In this article, we prove the converse of the above theorems. For some recent results concerning the Fibonacci and Lucas numbers, we refer the reader to [19, 20, 21, 22]. We also invite the reader to visit the second author's ResearchGate website [28], which contains freely downloadable articles on related topics of research [2, 12, 16, 23, 24, 25, 26, 27].

2. Preliminaries and Lemmas

In this section, we give some useful lemmas for the reader's convenience. First, Lengyel's result on the p-adic valuation of the Fibonacci and Lucas numbers is as follows.

Lemma 2.1. (Lengyel [9]) For every $n \geq 1$, we have

$$
\begin{gathered}
v_{2}\left(F_{n}\right)= \begin{cases}0, & \text { if } n \equiv 1,2 \quad(\bmod 3) ; \\
1, & \text { if } n \equiv 3 \quad(\bmod 6) ; \\
v_{2}(n)+2, & \text { if } n \equiv 0 \quad(\bmod 6),\end{cases} \\
v_{2}\left(L_{n}\right)= \begin{cases}0, & \text { if } n \equiv 1,2 \quad(\bmod 3) ; \\
2, & \text { if } n \equiv 3 \quad(\bmod 6) ; \\
1, & \text { if } n \equiv 0 \quad(\bmod 6),\end{cases}
\end{gathered}
$$

$v_{5}\left(F_{n}\right)=v_{5}(n), v_{5}\left(L_{n}\right)=0$, and if p is a prime, $p \neq 2$, and $p \neq 5$, then

$$
\begin{gathered}
v_{p}\left(F_{n}\right)= \begin{cases}v_{p}(n)+v_{p}\left(F_{z(p)}\right), & \text { if } n \equiv 0 \quad(\bmod z(p)) ; \\
0, & \text { otherwise. }\end{cases} \\
v_{p}\left(L_{n}\right)= \begin{cases}v_{p}(n)+v_{p}\left(F_{z(p)}\right), & \text { if } z(p) \text { is even and } n \equiv \frac{z(p)}{2}(\bmod z(p)) ; \\
0, & \text { otherwise. }\end{cases}
\end{gathered}
$$

Next, we give the formulas for the order of appearance of F_{n}^{k} and L_{n}^{k} given by Marques [10] and Pongsriiam [15], respectively.

Lemma 2.2. (Marques[10]) Let n be a positive integer.
(i) If $n \equiv 3(\bmod 6)$, then $z\left(F_{n}^{2}\right)=n F_{n}$ and $z\left(F_{n}^{k+1}\right)=n \frac{F_{n}^{k}}{2}$, for $k \geq 2$.
(ii) Let k and $n \geq 3$ be integers, with $k \geq 0$ and $n \not \equiv 3(\bmod 6)$, then $z\left(F_{n}^{k+1}\right)=n F_{n}^{k}$.

Lemma 2.3. (Pongsriiam[15]) Let $n \geq 2$. Then, the following statements hold.
(i) $z\left(L_{n}\right)=2 n$.
(ii) If $k \geq 2$ and $n \equiv 1,2(\bmod 3)$, then $z\left(L_{n}^{k}\right)=2 n L_{n}^{k-1}$.
(iii) If $k \geq 2$ and $n \equiv 3(\bmod 6)$, then $z\left(L_{n}^{k}\right)=n L_{n}^{k-1}$.
(iv) If $k \geq 2$ and $n \equiv 0(\bmod 6)$, then

$$
z\left(L_{n}^{k}\right)= \begin{cases}\frac{n L_{n}^{k-1}}{2^{2}(n)+1}, & \text { if } k \geq v_{2}(n)+3 \\ \frac{n L^{k}-1}{2^{k}-2}, & \text { if } k<v_{2}(n)+3\end{cases}
$$

Lemma 2.4. For each n and m, we have $n \mid F_{m}$ if and only if $z(n) \mid m$.

THE FIBONACCI QUARTERLY

Proof. This is a well-known result. For the proof, see for example Halton [4, Lemma 8, p. 222]. Note that Halton [4] used $\alpha(n)$ instead of $z(n)$ to denote the order of appearance of n and called it by the old name: the rank of apparition.

The next result is easy but we use it often in the proof of the main theorems, so we state it as a lemma.

Lemma 2.5. Let n and m be positive integers. Then, the following statements are equivalent. (i) $n \mid m$.
(ii) $v_{p}(n) \leq v_{p}(m)$ for every prime p.
(iii) $v_{p}(n) \leq v_{p}(m)$ for every prime p dividing n.

Proof. This result is also well-known and easy to prove. So, we leave the details to the reader.

In the proof of our main theorems, we apply Lemma 2.5 without further reference.

3. Main Results

We begin with the converse of the divisibility relation (1.1).
Theorem 3.1. Let k, m, and n be positive integers and $n \geq 3$. Then, the following statements hold.
(i) If $F_{n}^{k+1} \mid F_{n m}$ and $n \not \equiv 3(\bmod 6)$, then $F_{n}^{k} \mid m$.
(ii) If $F_{n}^{k+1} \mid F_{n m}$ and $n \equiv 3(\bmod 6)$, then $F_{n}^{k} \mid 2 m$ and $F_{n}^{k-1} \mid m$.
(iii) If $F_{n}^{k+1} \mid F_{n m}, n \equiv 3(\bmod 6)$, and $2^{k} \mid m$, then $F_{n}^{k} \mid m$.

Proof. We use Lemma 2.2 and Lemma 2.4 to prove this theorem. Assume that $F_{n}^{k+1} \mid F_{n m}$. If $n \not \equiv 3(\bmod 6)$, then $n F_{n}^{k}=z\left(F_{n}^{k+1}\right)$ and $z\left(F_{n}^{k+1}\right) \mid n m$, which implies $F_{n}^{k} \mid m$. This proves (i). So assume that $n \equiv 3(\bmod 6)$. If $k=1$, then the calculation is the same as the case $n \not \equiv 3(\bmod 6)$ and we obtain $F_{n} \mid m$, which implies the desired result in both (ii) and (iii). So suppose $k \geq 2$. Then, we obtain $n \frac{F_{n}^{k}}{2}=z\left(F_{n}^{k+1}\right)$ and $z\left(F_{n}^{k+1}\right) \mid n m$, which implies $F_{n}^{k} \mid 2 m$. By Lemma 2.1, we know that $2 \mid F_{n}$ and therefore,

$$
\begin{equation*}
F_{n}^{k-1} \left\lvert\, F_{n}^{k-1}\left(F_{n} / 2\right)=\frac{1}{2} F_{n}^{k}\right. \text { and } \left.\frac{1}{2} F_{n}^{k} \right\rvert\, m . \tag{3.1}
\end{equation*}
$$

This proves (ii). Next suppose that $2^{k} \mid m$. Since $F_{n}^{k} \mid 2 m$, we have $\frac{F_{n}^{k}}{2^{k}} \frac{m}{2^{k-1}}$. Since $k \geq 2$, we obtain $\left.F_{n}^{k}\left|\frac{2 F_{n}^{k}}{2^{k}}\right| \frac{2 m}{2^{k-1}} \right\rvert\, m$, as required.
Theorem 3.2. Let k, m, and n be positive integers and $n \geq 3$. Then, the following statements hold.
(i) If $F_{n}^{k+1} \| F_{n m}$ and $n \not \equiv 3(\bmod 6)$, then $F_{n}^{k} \| m$.
(ii) If $F_{n}^{k+1} \| F_{n m}, n \equiv 3(\bmod 6)$, and $2^{k} \mid m$, then $F_{n}^{k} \| m$.
(iii) If $F_{n}^{k+1} \| F_{n m}, n \equiv 3(\bmod 6)$, and $2^{k} \nmid m$, then $F_{n}^{k-1} \| m$.

Proof. Assume that $F_{n}^{k+1} \| F_{n m}$. We divide the proof into three cases as follows.
Case 1. $n \not \equiv 3(\bmod 6)$. Then by Theorem 3.1, we obtain $F_{n}^{k} \mid m$. If $F_{n}^{k+1} \mid m$, then $F_{n}^{\ell} \| m$ for some $\ell \geq k+1$ and we obtain by Theorem 1.1 that $F_{n}^{k+2}\left|F_{n}^{\ell+1}\right| F_{n m}$, which contradicts the assumption that $F_{n}^{k+1} \| F_{n m}$. Therefore, $F_{n}^{k} \| m$ and (i) is proved.

Case 2. $n \equiv 3(\bmod 6)$ and $2^{k} \mid m$. By Theorem 3.1(iii), $F_{n}^{k} \mid m$. If $F_{n}^{k+1} \mid m$, then we obtain by Theorem 1.1 that $F_{n}^{k+2} \mid F_{n m}$, which contradicts the assumption that $F_{n}^{k+1} \| F_{n m}$. So $F_{n}^{k} \| m$.

Case 3. $n \equiv 3(\bmod 6)$ and $2^{k} \nmid m$. By Theorem 3.1(ii), $F_{n}^{k-1} \mid m$. If $F_{n}^{k} \mid m$, then $v_{2}(m) \geq v_{2}\left(F_{n}^{k}\right)=k$, which contradicts $2^{k} \nmid m$. So, $F_{n}^{k-1} \| m$, as required.

Theorem 3.3. Let k, m, and n be positive integers and $n \geq 2$. Then, the following statements hold.
(i) If $L_{n}^{k+1} \mid L_{n m}$, then $n \not \equiv 0(\bmod 3), m$ is odd, and $L_{n}^{k} \mid m$.
(ii) If $L_{n}^{k+1} \| L_{n m}$, then $L_{n}^{k} \| m$.

Proof. Assume that $L_{n}^{k+1} \mid L_{n m}$. We first show that $n \not \equiv 0(\bmod 3)$. If $n \equiv 3(\bmod 6)$, then we obtain by Lemma 2.1 that $2(k+1)=v_{2}\left(L_{n}^{k+1}\right) \leq v_{2}\left(L_{n m}\right) \leq 2$, which is a contradiction. Similarly, if $n \equiv 0(\bmod 6)$, then $k+1=v_{2}\left(L_{n}^{k+1}\right) \leq v_{2}\left(L_{n m}\right)=1$, which is not the case. Hence, $n \not \equiv 0,3(\bmod 6)$ and so $n \not \equiv 0(\bmod 3)$. Next, we show that m is odd. So, suppose for a contradiction that m is even. By the primitive divisor theorem of Carmichael [3], for each $n \notin\{1,3\}$, there exists a prime $p \notin\{2,5\}$ such that $p \mid L_{n}$. By Lemma 2.1, $z(p)$ is even and $n \equiv \frac{z(p)}{2}(\bmod z(p))$. Then $n m \equiv 0(\bmod z(p))$ so by Lemma 2.1, $v_{p}\left(L_{n m}\right)=0$, which contradicts the fact that $p \mid L_{n}$ and $L_{n} \mid L_{n m}$. Hence, m is odd. Recall the well-known identity that $F_{2 j}=F_{j} L_{j}$ for every $j \geq 1$. Then $L_{n m} \mid F_{2 n m}$ and so $L_{n}^{k+1} \mid F_{2 n m}$. By Lemmas 2.4 and 2.3, we obtain $2 n L_{n}^{k}=z\left(L_{n}^{k+1}\right)$ and $z\left(L_{n}^{k+1}\right) \mid 2 n m$, which implies $L_{n}^{k} \mid m$, as required.

Next, we prove (ii). Assume that $L_{n}^{k+1} \| L_{n m}$. Then by (i), m is odd and $L_{n}^{k} \mid m$. If $L_{n}^{k+1} \mid m$, then by Theorem 1.2, $L_{n}^{k+2} \mid L_{n m}$, a contradiction. So, $L_{n}^{k} \| m$.

It may be possible to prove the next theorem by applying Lemma 2.3, but it seems simpler to calculate straightforwardly using Lemma 2.1.

Theorem 3.4. Let k, m, and n be positive integers and $n \geq 2$. If $L_{n}^{k+1} \mid F_{n m}$, then m is even. Moreover, the following statements hold.
(i) If $L_{n}^{k+1} \mid F_{n m}$ and $n \neq 0(\bmod 6)$, then $L_{n}^{k} \mid m$.
(ii) If $L_{n}^{k+1} \| F_{n m}$ and $n \not \equiv 0(\bmod 6)$, then $L_{n}^{k} \| m$.
(iii) If $L_{n}^{k+1} \mid F_{n m}$ and $n \equiv 0(\bmod 6)$, then $L_{n}^{\min \left\{v_{2}(m), k\right\}} \mid m$.
(iv) If $L_{n}^{k+1} \| F_{n m}$ and $n \equiv 0(\bmod 6)$, then $L_{n}^{\min \left\{v_{2}(m), k\right\}} \| m$.

Proof. Assume that $L_{n}^{k+1} \mid F_{n m}$. Then, for each prime p dividing $L_{n}, v_{p}\left(L_{n}^{k+1}\right) \leq v_{p}\left(F_{n m}\right)$. By Lemma 2.1, we obtain the following inequalities:

$$
v_{5}\left(L_{n}^{k}\right)=0 \leq v_{p}(m)
$$

and for every prime $p \notin\{2,5\}$ and $p \mid L_{n}$, we have

$$
\begin{aligned}
v_{p}(n)+v_{p}\left(F_{z(p)}\right)+v_{p}\left(L_{n}^{k}\right)=v_{p}\left(L_{n}^{k+1}\right) & \leq v_{p}\left(F_{n m}\right) \\
& \leq v_{p}(n m)+v_{p}\left(F_{z(p)}\right) \\
& =v_{p}(n)+v_{p}(m)+v_{p}\left(F_{z(p)}\right) .
\end{aligned}
$$

The above inequalities imply that

$$
\begin{equation*}
v_{p}\left(L_{n}^{k}\right) \leq v_{p}(m) \text { for each prime } p \neq 2 . \tag{3.2}
\end{equation*}
$$

Note that (3.2) holds whenever $L_{n}^{k+1} \mid F_{n m}$. Suppose $n \neq 3$. Then, by the primitive divisor theorem of Carmichael [3], there exists a prime $p \neq 2$ such that $p \mid L_{n}$. Then, by Lemma 2.1, $n \equiv \frac{z(p)}{2}(\bmod z(p))$. Since $p \mid L_{n}$, we have $p \mid F_{n m}$. So, $n m \equiv 0(\bmod z(p))$. From this and the congruence $n \equiv \frac{z(p)}{2}(\bmod z(p))$, we see that m is even. If $n=3$ and m is odd, then $1 \geq v_{2}\left(F_{3 m}\right)=v_{2}\left(F_{n m}\right) \geq v_{2}\left(L_{n}^{k+1}\right)=v_{2}\left(4^{k+1}\right)=2 k+2$, which is not the case. So in any case, m is even. This proves the first part of this theorem.

THE FIBONACCI QUARTERLY

From this point on, we assume that m is even and we also use Lemma 2.1 without further reference. To prove (i), assume that $n \not \equiv 0(\bmod 6)$. If $n \equiv 1,2,4,5(\bmod 6)$, then $v_{2}\left(L_{n}^{k}\right)=$ $0 \leq v_{2}(m)$. If $n \equiv 3(\bmod 6)$, then we obtain

$$
v_{2}\left(L_{n}^{k}\right)+2=v_{2}\left(L_{n}^{k+1}\right) \leq v_{2}\left(F_{n m}\right)=v_{2}(n m)+2=v_{2}(m)+2,
$$

which implies $v_{2}\left(L_{n}^{k}\right) \leq v_{2}(m)$. So in any case, $v_{2}\left(L_{n}^{k}\right) \leq v_{2}(m)$. From this and (3.2), we conclude that $v_{p}\left(L_{n}^{k}\right) \leq v_{p}(m)$ for each prime p dividing L_{n}. Therefore, $L_{n}^{k} \mid m$.

Next, we prove (ii). Assume that $L_{n}^{k+1} \| F_{n m}$ and $n \not \equiv 0(\bmod 6)$. By (i), $L_{n}^{k} \mid m$. If $L_{n}^{k+1} \mid m$, then by Theorem $1.3(\mathrm{i}), L_{n}^{k+2} \mid F_{n m}$, a contradiction. So $L_{n}^{k} \| m$.

Next, we prove (iii). Assume that $L_{n}^{k+1} \mid F_{n m}$ and $n \equiv 0(\bmod 6)$. If $v_{2}(m) \geq k$, then

$$
v_{2}\left(L_{n}^{\min \left\{v_{2}(m), k\right\}}\right)=v_{2}\left(L_{n}^{k}\right)=k \leq v_{2}(m) .
$$

If $v_{2}(m)<k$, then

$$
v_{2}\left(L_{n}^{\min \left\{v_{2}(m), k\right\}}\right)=v_{2}\left(L_{n}^{v_{2}(m)}\right)=v_{2}(m) .
$$

In any case, $v_{2}\left(L_{n}^{\min \left\{v_{2}(m), k\right\}}\right) \leq v_{2}(m)$. By (3.2), we also obtain $v_{p}\left(L_{n}^{\min \left\{v_{2}(m), k\right\}}\right) \leq v_{p}\left(L_{n}^{k}\right) \leq$ $v_{p}(m)$ for every $p \neq 2$. Therefore, $L_{n}^{\min \left\{v_{2}(m), k\right\}} \mid m$.

Next we prove (iv). Assume that $L_{n}^{k+1} \| F_{n m}$ and $n \equiv 0(\bmod 6)$. By (iii), $L_{n}^{\min \left\{v_{2}(m), k\right\}} \mid m$. Suppose for a contradiction that $L_{n}^{\min \left\{v_{2}(m), k\right\}+1} \mid m$. If $v_{2}(m) \geq k$, then $L_{n}^{, k+1} \mid m$, and we obtain by Theorem 1.3 that $L_{n}^{k+2} \mid F_{n m}$, which is not the case. If $v_{2}(m)<k$, then $L_{n}^{v_{2}(m)+1} \mid m$, and so $v_{2}(m) \geq v_{2}\left(L_{n}^{v_{2}(m)+1}\right)=v_{2}(m)+1$, a contradiction. This completes the proof.

Theorems 3.1 to 3.4 can be stated in a different form. For example, suppose $F_{n}^{k+1} \mid F_{\ell}$. Then, $F_{n} \mid F_{\ell}$ and so $n \mid \ell$. Therefore, we can write $\ell=n m$ for some $m \in \mathbb{N}$, and Theorem 3.1 can be changed to the following.

Corollary 3.5. Let k, ℓ, and n be positive integers and $n \geq 3$. Then, the following statements hold.
(i) If $F_{n}^{k+1} \mid F_{\ell}$ and $n \not \equiv 3(\bmod 6)$, then $F_{n}^{k} \left\lvert\, \frac{\ell}{n}\right.$,
(ii) If $F_{n}^{k+1} \mid F_{\ell}$ and $n \equiv 3(\bmod 6)$, then $F_{n}^{k} \left\lvert\, 2 \frac{\ell}{n}\right.$ and $F_{n}^{k-1} \left\lvert\, \frac{\ell}{n}\right.$,
(iii) If $F_{n}^{k+1} \mid F_{\ell}, n \equiv 3(\bmod 6)$, and $2^{k} \left\lvert\, \frac{\ell}{n}\right.$, then $F_{n}^{k} \left\lvert\, \frac{\ell}{n}\right.$.

Similarly, another version of Theorem 3.2 is as follows.
Corollary 3.6. Let k, m, and n be positive integers and $n \geq 3$. Then, the following statements hold.
(i) If $F_{n}^{k+1} \| F_{m}$ and $n \not \equiv 3(\bmod 6)$, then $F_{n}^{k} \| \frac{m}{n}$.
(ii) If $F_{n}^{k+1} \| F_{m}, n \equiv 3(\bmod 6)$, and $2^{k} \left\lvert\, \frac{m}{n}\right.$, then $F_{n}^{k} \| \frac{m}{n}$.
(iii) If $F_{n}^{k+1} \| F_{m}, n \equiv 3(\bmod 6)$, and $2^{k} \nmid \frac{m}{n}$, then $F_{n}^{k-1} \| \frac{m}{n}$.

Theorems 3.3 and 3.4 can also be given in another form. We leave the details to the reader.

4. Acknowledgment

The referee gave us suggestions that improved the presentation of this article. Kritkhajohn Onphaeng received a scholarship from Development and Promotion for Science and Technology Talents Project (DPST). Prapanpong Pongsriiam received financial support jointly from The Thailand Research Fund and Faculty of Science Silpakorn University, grant number RSA5980040. Prapanpong Pongsriiam is the corresponding author.

References

[1] A. Benjamin and J. Rouse, When does F_{m}^{L} divide F_{n} ? A combinatorial solution, Applications of Fibonacci Numbers, 10 (2006), 27-34.
[2] B. Berndt and P. Pongsriiam, Discarded fragments from Ramanujan's papers, Analytic and Probabilistic Methods in Number Theory, Kubilius Memorial Volume, 2012, 49-59.
[3] R. D. Carmichael. On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$. Annals of Mathematics, 15 (1913), 30-70.
[4] J. H. Halton, On the divisibility properties of Fibonacci numbers, The Fibonacci Quarterly, 4.3 (1966), 217-240.
[5] V. E. Hoggatt, Jr. and M. Bicknell-Johnson, Divisibility by Fibonacci and Lucas squares, The Fibonacci Quarterly, 15.1 (1977), 3-8.
[6] N. Khaochim and P. Pongsriiam, The general case on the order of appearance of product of consecutive Lucas numbers, Acta Mathematica Universitatis Comenianae, accepted.
[7] N. Khaochim and P. Pongsriiam, On the order of appearance of products of Fibonacci numbers, Contributions to Discrete Mathematics, accepted.
[8] N. Khaochim and P. Pongsriam, The period modulo product of consecutive Fibonacci numbers, International Journal of Pure and Applied Mathematics, 90.3 (2014), 335-344.
[9] T. Lengyel, The order of the Fibonacci and Lucas numbers, The Fibonacci Quarterly, 33.3 (1995), 234-239.
[10] D. Marques, The order of appearance of powers of Fibonacci and Lucas numbers, The Fibonacci Quarterly, 50.3 (2012), 239-245.
[11] Y. Matijasevich, Hilbert's Tenth Problem, MIT Press, 1996.
[12] K. Onphaeng and P. Pongsriiam, Jacobsthal and Jacobsthal-Lucas numbers and sums introduced by Jacobsthal and Tverberg, Journal of Integer Sequences, 20.3 (2017), Article 17.3.6.
[13] K. Onphaeng and P. Pongsriiam, Subsequences and divisibility by powers of the Fibonacci numbers, The Fibonacci Quarterly, 52.2 (2014), 163-171.
[14] C. Panraksa, A. Tangboonduangjit, and K. Wiboonton, Exact divisibility properties of some subsequence of Fibonacci numbers, The Fibonacci Quarterly, 51.4 (2013), 307-318.
[15] P. Pongsriiam, A complete formula for the order of appearance of the powers of Lucas numbers, Communications of the Korean Mathematical Society, 31.3 (2016), 447-450.
[16] P. Pongsriiam, A remark on relatively prime sets, Integers, 13 (2013), A49, 14 pages.
[17] P. Pongsriiam, Exact divisibility by powers of the Fibonacci and Lucas numbers, Journal of Integer Sequences, 17.11 (2014), Article 14.11.2.
[18] P. Pongsriiam, Factorization of Fibonacci numbers into products of Lucas numbers and related results, JP Journal of Algebra, Number Theory and Applications, 38.4 (2016), 363-372.
[19] P. Pongsriiam, Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation, Communications of the Korean Mathematical Society, 32.3 (2017), 511-522.
[20] P. Pongsriiam, Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation II, Mathematical Reports, accepted.
[21] P. Pongsriiam, Fibonacci and Lucas Numbers which are one away from their products, The Fibonacci Quarterly, 55.1 (2017), 29-40.
[22] P. Pongsriiam, Integral values of the generating functions of Fibonacci and Lucas numbers, College Mathematics Journal, 48.2 (2017), 97-101.
[23] P. Pongsriiam, Local behaviors of the number of relatively prime sets, International Journal of Number Theory, 12.6 (2016), 1575-1593.
[24] P. Pongsriiam, Longest arithmetic progressions in reduced residue systems, Journal of Number Theory, 183 (2018), 309-325.
[25] P. Pongsriiam, Relatively prime sets, divisor sums, and partial sums, Journal of Integer Sequences, 16.9 (2013), Article 13.9.1.
[26] P. Pongsriiam and R. C. Vaughan, The divisor function on residue classes I, Acta Arithmetica, 168.4 (2015), 369-381.
[27] P. Pongsriiam and R. C. Vaughan, The divisor function on residue classes II, Acta Arithmetica, 182.2 (2018), 133-181.
[28] P. Pongsriiam's ResearchGate website https://www.researchgate.net/profile/Prapanpong_ Pongsriiam.
[29] A. Tangboonduangjit and K. Wiboonton, Divisibility properties of some subsequences of Fibonacci numbers, East-West Journal of Mathematics, Special Volume, (2012), 331-336.

THE FIBONACCI QUARTERLY

MSC2010: 11B39
Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand

E-mail address: dome3579@gmail.com
Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand

E-mail address: prapanpong@gmail.com, pongsriiam_p@silpakorn.edu

