A SIMPLE PROOF OF AN IDENTITY GENERALIZING FIBONACCI-LUCAS IDENTITIES

ANDREAS N. PHILIPPOU AND SPIROS D. DAFNIS

Abstract

Let $F_{n}^{(k)}=0$ for $-k+1 \leq n \leq 0, F_{1}^{(k)}=1$, and $F_{n}^{(k)}=\sum_{j=1}^{k} F_{n-j}^{(k)}$ for $n \geq 2$. Also let $L_{0}^{(k)}=k, L_{1}^{(k)}=1, L_{n}^{(k)}=n+\sum_{j=1}^{n-1} L_{n-j}^{(k)}$ for $2 \leq n \leq k$, and $L_{n}^{(k)}=\sum_{j=1}^{k} L_{n-j}^{(k)}$ for $n \geq k+1$. The identity $\sum_{i=0}^{n} m^{i}\left(\left(L_{i}^{(k)}+(m-2) F_{i+1}^{(k)}-\sum_{j=3}^{k}(j-2) F_{i-j+1}^{(k)}\right)\right)=m^{n+1} F_{n+1}^{(k)}+$ $k-2(m \geq 2, k \geq 2)$, derived recently by means of colored tiling [4], is presently proved using only the definitions of $F_{n}^{(k)}$ and $L_{n}^{(k)}$, and the identity $L_{n}^{(k)}=\sum_{j=1}^{k} j F_{n-j+1}^{(k)}(n \geq 1)$.

1. Introduction and Summary

Let $m \geq 2$ be a fixed positive integer, and let n be a nonnegative integer, unless otherwise specified. Denote by F_{n} and L_{n} the Fibonacci and Lucas numbers, respectively, i.e., $F_{0}=0$, $F_{1}=1, F_{n}=F_{n-1}+F_{n-2}(n \geq 2)$ and $L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2}(n \geq 2)$. The first, the second, and the third of the following well-known Fibonacci-Lucas identities

$$
\begin{gather*}
\sum_{i=0}^{n} 2^{i} L_{i}=2^{n+1} F_{n+1}, \sum_{i=0}^{n} 3^{i}\left(L_{i}+F_{i+1}\right)=3^{n+1} F_{n+1} \\
\sum_{i=0}^{n} m^{i}\left(L_{i}+(m-2) F_{i+1}\right)=m^{n+1} F_{n+1} \tag{1.1}
\end{gather*}
$$

are due to Benjamin and Quinn [1, 2], Marques [8] and Edgar [5], respectively. See also Sury [12] and Kwong [7] for the first and Martinjak [9] for the second.

Let $k \geq 2$ be a fixed positive integer. Dafnis, Philippou, and Livieris [4] generalized the above identities to the Fibonacci and Lucas numbers of order k, deriving the following theorem by means of color tiling.

Theorem 1. Let $\left(F_{n}^{(k)}\right)_{n \geq 0}$ be the sequence of Fibonacci numbers of order k [9], and set $F_{-1}^{(k)}=\cdots F_{-k+1}^{(k)}=0$, i.e., $F_{n}^{(k)}=0$ for $-k+1 \leq n \leq 0, F_{1}^{(k)}=1$, and $F_{n}^{(k)}=\sum_{j=1}^{k} F_{n-j}^{(k)}$ for $n \geq 2$. Also let $\left(L_{n}^{(k)}\right)_{n \geq 0}$, be the sequence of Lucas numbers of order $k[3]$, i.e., $L_{0}^{(k)}=k$, $L_{1}^{(k)}=1, L_{n}^{(k)}=n+\sum_{j=1}^{n-1} L_{n-j}^{(k)}$ for $2 \leq n \leq k$, and $L_{n}^{(k)}=\sum_{j=1}^{k} L_{n-j}^{(k)}$ for $n \geq k+1$. Then,

$$
\sum_{i=0}^{n} m^{i}\left(\left(L_{i}^{(k)}+(m-2) F_{i+1}^{(k)}-\sum_{j=3}^{k}(j-2) F_{i-j+1}^{(k)}\right)\right)=m^{n+1} F_{n+1}^{(k)}+k-2
$$

where $\sum_{j=a}^{b} g(j)=0$ if $a>b$.

A PROOF OF AN IDENTITY GENERALIZING FIBONACCI-LUCAS IDENTITIES

2. New Proof of Theorem 1

We presently give a new proof of Theorem 1, using only the definitions of $\left(F_{n}^{(k)}\right)_{n \geq-k+1}$ and $\left(L_{n}^{(k)}\right)_{n \geq 0}$, and the relation $L_{n}^{(k)}=\sum_{j=1}^{k} j F_{n-j+1}^{(k)}, n \geq 1$, which readily follows from (2.18) of Charalambides [3].

Proof. Using $L_{0}^{(k)}=k, F_{1}^{(k)}=1$, and adding and subtracting $F_{i}^{(k)}$ in the parenthesis, we have

$$
\begin{align*}
\sum_{i=0}^{n} & m^{i}\left(L_{i}^{(k)}+(m-2) F_{i+1}^{(k)}-\sum_{j=3}^{k}(j-2) F_{i-j+1}^{(k)}\right) \tag{2.1}\\
& =k+m-2+\sum_{i=1}^{n} m^{i}\left(L_{i}^{(k)}+(m-2) F_{i+1}^{(k)}-F_{i}^{(k)}-\sum_{j=1}^{k}(j-2) F_{i-j+1}^{(k)}\right) .
\end{align*}
$$

Next, using $F_{i+1}^{(k)}=\sum_{j=1}^{k} F_{i-j+1}^{(k)}$ for $i \geq 1$, which hold true by definition, and $L_{i}^{(k)}=$ $\sum_{j=1}^{k} j F_{i-j+1}^{(k)}$ for $i \geq 1[3]$, we get

$$
\sum_{j=1}^{k}(j-2) F_{i-j+1}^{(k)}=\sum_{j=1}^{k} j F_{i-j+1}^{(k)}-2 \sum_{j=1}^{k} F_{i-j+1}^{(k)}=L_{i}^{(k)}-2 F_{i+1}^{(k)},
$$

which implies

$$
\begin{align*}
k & +m-2+\sum_{i=1}^{n} m^{i}\left(L_{i}^{(k)}+(m-2) F_{i+1}^{(k)}-F_{i}^{(k)}-\sum_{j=1}^{k}(j-2) F_{i-j+1}^{(k)}\right) \\
& =k+m-2+\sum_{i=1}^{n} m^{i}\left(m F_{i+1}^{(k)}-F_{i}^{(k)}\right) \tag{2.2}\\
& =k+m-2+m^{n+1} F_{n+1}^{(k)}-m F_{1}^{(k)}=m^{n+1} F_{n+1}^{(k)}+k-2 .
\end{align*}
$$

Relations (2.1) and (2.2) establish the theorem.
The following obvious corollary to the theorem is the analogue of (1.1) for the Lucas numbers of order 3 (or 3-step Lucas numbers) and the Tribonacci numbers.

Corollary 2. Let $\left(T_{n}\right)_{n \geq 0}$ be the sequence of Tribonacci numbers [6, 9] i.e., $T_{0}=0, T_{1}=1$, and $T_{n}=T_{n-1}+T_{n-2}+T_{n-3}$ for $n \geq 3$. Also let $\left(V_{n}\right)_{n \geq 0}$ be the sequence of Lucas numbers of order 3 [3] (or 3-step Lucas numbers [11], A001644), i.e., $V_{0}=3, V_{1}=1, V_{2}=3$, and $V_{n}=V_{n-1}+V_{n-2}+V_{n-3}$ for $n \geq 3$. Set $T_{-2}=T_{-1}=0$. Then,

$$
\begin{gathered}
\sum_{i=0}^{n} 2^{i}\left(V_{i}-T_{i-2}\right)=2^{n+1} T_{n+1}+1, \sum_{i=0}^{n} 3^{i}\left(V_{i}+T_{i+1}-T_{i-2}\right)=3^{n+1} T_{n+1}+1, \\
\sum_{i=0}^{n} m^{i}\left(V_{i}+(m-2) T_{i+1}-T_{i-2}\right)=m^{n+1} T_{n+1}+1
\end{gathered}
$$

3. Acknowledgement

The authors thank an anonymous referee for the careful comments, which helped improve the presentation of the paper.

THE FIBONACCI QUARTERLY

References

[1] A. T. Benjamin and J. J. Quinn, Fibonacci and lucas identities through colored tilings, Utilitas Mathematica, 56 (1999), 137-142.
[2] A. T. Benjamin and J. J. Quinn, Proofs that Really Count, vol. 27 of the Dolciani Mathematical Expositions, Mathematical Association of America, Washington, DC, 2003.
[3] C. A. Charalambides, Lucas numbers and polynomials of order k and the length of the longest circular success run, The Fibonacci Quarterly, 29.4 (1991), 290-297.
[4] S. D. Dafnis, A. N. Philippou, and I. E. Livieris, An identity relating Fibonacci and Lucas numbers or order k, Electronic Notes in Discrete Mathematics, to appear (2018).
[5] T. Edgar, Extending some Fibonacci-Lucas relations, The Fibonacci Quarterly, 54.1 (2016), 79.
[6] M. Feinberg, Fibonacci-Tribonacci, The Fibonacci Quarterly, 1.1 (1963), 71-74.
[7] H. Kwong, An alternate proof of Sury's Fibonacci-Lucas relation, The American Mathematical Monthly, 121 (6) (2014), 514.
[8] D. Marques, A new Fibonacci-Lucas relation, The American Mathematical Monthly, 122 (7) (2015), 683.
[9] I. Martinjak, Two extensions of the Sury's identity, The American Mathematical Monthly, 123 (11) (2016), 919.
[10] A. N. Philippou and A. A. Muwafi, Waiting for the k-th consecutive success and the Fibonacci sequence of order k, The Fibonacci Quarterly, 20.1 (1982), 28-32.
[11] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, https://oeis.org/.
[12] B. Sury, A polynomial parent to a Fibonacci-Lucas relation, The American Mathematical Monthly, 121 (3) (2014), 236.

MSC2010: 11B39
Department of Mathematics, University of Patras, 265-00 Patras, Greece
E-mail address: anphilip@math.upatras.gr
Department of Mathematics, University of Patras, 265-00 Patras, Greece
E-mail address: dafnisspyros@gmail.com

