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(k)
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(k)
n =

∑k
j=1 jF

(k)
n−j+1 (n ≥ 1).

1. Introduction and Summary

Let m ≥ 2 be a fixed positive integer, and let n be a nonnegative integer, unless otherwise
specified. Denote by Fn and Ln the Fibonacci and Lucas numbers, respectively, i.e., F0 = 0,
F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2) and L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 (n ≥ 2). The first,
the second, and the third of the following well-known Fibonacci-Lucas identities

n∑
i=0

2iLi = 2n+1Fn+1,
n∑

i=0

3i(Li + Fi+1) = 3n+1Fn+1,

n∑
i=0

mi(Li + (m− 2)Fi+1) = mn+1Fn+1,

(1.1)

are due to Benjamin and Quinn [1, 2], Marques [8] and Edgar [5], respectively. See also
Sury [12] and Kwong [7] for the first and Martinjak [9] for the second.

Let k ≥ 2 be a fixed positive integer. Dafnis, Philippou, and Livieris [4] generalized the
above identities to the Fibonacci and Lucas numbers of order k, deriving the following theorem
by means of color tiling.

Theorem 1. Let (F
(k)
n )n≥0 be the sequence of Fibonacci numbers of order k [9], and set
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(k)
−1 = · · ·F (k)
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(k)
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for n ≥ 2. Also let (L
(k)
n )n≥0, be the sequence of Lucas numbers of order k [3], i.e., L

(k)
0 = k,
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n∑
i=0

mi
((

L
(k)
i + (m− 2)F

(k)
i+1 −

k∑
j=3

(j − 2)F
(k)
i−j+1

))
= mn+1F
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n+1 + k − 2,

where
∑b

j=a g(j) = 0 if a > b.
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2. New Proof of Theorem 1

We presently give a new proof of Theorem 1, using only the definitions of (F
(k)
n )n≥−k+1 and

(L
(k)
n )n≥0, and the relation L

(k)
n =

∑k
j=1 jF

(k)
n−j+1, n ≥ 1, which readily follows from (2.18) of

Charalambides [3].

Proof. Using L
(k)
0 = k, F

(k)
1 = 1, and adding and subtracting F

(k)
i in the parenthesis, we have
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Next, using F
(k)
i+1 =

∑k
j=1 F

(k)
i−j+1 for i ≥ 1, which hold true by definition, and L

(k)
i =∑k

j=1 jF
(k)
i−j+1 for i ≥ 1 [3], we get

k∑
j=1

(j − 2)F
(k)
i−j+1 =

k∑
j=1

jF
(k)
i−j+1 − 2

k∑
j=1

F
(k)
i−j+1 = L

(k)
i − 2F

(k)
i+1,

which implies

k + m− 2 +
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mi
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i+1 − F

(k)
i −
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j=1

(j − 2)F
(k)
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)
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mi(mF
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= k + m− 2 + mn+1F
(k)
n+1 −mF

(k)
1 = mn+1F

(k)
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Relations (2.1) and (2.2) establish the theorem. �

The following obvious corollary to the theorem is the analogue of (1.1) for the Lucas numbers
of order 3 (or 3-step Lucas numbers) and the Tribonacci numbers.

Corollary 2. Let (Tn)n≥0 be the sequence of Tribonacci numbers [6, 9] i.e., T0 = 0, T1 = 1,
and Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3. Also let (Vn)n≥0 be the sequence of Lucas numbers
of order 3 [3] (or 3-step Lucas numbers [11], A001644), i.e., V0 = 3, V1 = 1, V2 = 3, and
Vn = Vn−1 + Vn−2 + Vn−3 for n ≥ 3. Set T−2 = T−1 = 0. Then,

n∑
i=0

2i(Vi − Ti−2) = 2n+1Tn+1 + 1,
n∑

i=0

3i(Vi + Ti+1 − Ti−2) = 3n+1Tn+1 + 1,

n∑
i=0

mi(Vi + (m− 2)Ti+1 − Ti−2) = mn+1Tn+1 + 1.
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