
CONNECTION COEFFICIENTS FOR HIGHER-ORDER BERNOULLI AND

EULER POLYNOMIALS: A RANDOM WALK APPROACH

LIN JIU AND CHRISTOPHE VIGNAT

Abstract. We use random walks as an approach to obtain connection coefficients for higher-
order Bernoulli and Euler polynomials. In particular, we study the cases of a 1-dimensional
linear reflected Brownian motion and of a 3-dimensional Bessel process. By considering the
successive hitting times of two, three, and four fixed levels of these random walks, we obtain
non-trivial identities that involve higher-order Bernoulli and Euler polynomials.

1. Introduction

Different types of random walks have been studied in the literature, together with their
connections to different fields of mathematics and physics; for a modern introduction, see, e.g.,
[6]. In this paper, we focus on two specific random walks: the 1-dimensional linear reflected
Brownian motion and the 3-dimensional Bessel process. It would seem that there is no relation
between these processes and special functions such as Bernoulli and Euler polynomials that
appear mostly in number theory and combinatorics. However, we will show how the study
of the hitting times of these two processes allows us to derive non-elementary identities for

higher-order Bernoulli and Euler polynomials, denoted by B
(p)
n (x) and E

(p)
n (x), respectively.

They are defined through their generating functions as(
t

et − 1

)p

ext =
∑
n≥0

B(p)
n (x)

tn

n!
and

(
2

et + 1

)p

ext =
∑
n≥0

E(p)
n (x)

tn

n!
. (1.1)

The special case p = 1 yields the usual Bernoulli and Euler polynomials: B
(1)
n (x) = Bn(x)

and E
(1)
n (x) = En(x); in addition, Bernoulli and Euler numbers are the special evaluations

Bn = Bn(0) and En = 2nEn(1/2). See, e.g., [8, Chpt. 24] for their properties.

One of the key tools of this work is the interpretation of the polynomials B
(p)
n (x) and E

(p)
n (x)

as probabilistic moments of certain random variables that are related to the hitting times of
some random walks, which will be introduced in Section 2.

This study arises from early work on the higher-order Euler polynomials. In a previous
article [5, eq. 3.8, p. 781], we obtained the following expansion for the usual Euler polynomials
as a linear combination of higher-order Euler polynomials: for any positive integer N ,

En(x) =
1

Nn

∑
l≥N

p
(N)
l E(l)

n

(
l −N

2
+Nx

)
, (1.2)

where the positive coefficients p
(N)
l are defined by the generating function

1

TN (1/t)
=
∑
l≥0

p
(N)
l tl,

via the N -th Chebychev polynomial TN (t) [8, Table 18.3.1]. These coefficients p
(N)
l also appear

as transition probabilities in the context of a random walk over a finite number of sites [5,
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Note 4.8, p. 787]. This characterization provides an alternate interpretation of (1.2) in terms
of a Markov process.

For the two random walks considered in this paper, we shall focus on their consecutive
hitting times: namely, for a process starting from the origin at time t = 0, we consider the
first epochs — called hitting times — at which the process reaches successive levels 0 = a0 <
a1 < a2 < · · · < aN . In particular, we study some special cases for N = 2, 3, and 4 levels.
From the moment generating functions of these hitting times, we derive identities involving

B
(p)
n (x) and E

(p)
n (x), which will be presented in Section 3 and Section 4.

2. Probabilistic Preliminaries and Principle

2.1. The symbols B, E and U . We shall make full use of the classical umbral symbols B,
E , and U , defined as follows — for an introduction to the classical umbral calculus, see, for
example, [4, 9]. The Bernoulli symbol B satisfies the evaluation rule

(x+ B)n = Bn(x). (2.1)

Equivalently, this symbol B can be interpreted as a random variable [3, Thm. 2.3, p. 384]:
if LB is a random variable distributed according to the squared hyperbolic secant density
pB(t) = π sech2(πt)/2, then, for any suitable function f , with i2 = −1,

f(x+ B) = E
[
f

(
x+ iLB −

1

2

)]
=

∫
R
f

(
x+ it− 1

2

)
pB(t)dt.

In particular, choosing f(x) = xn produces the Bernoulli polynomial (2.1), so that B coincides
with the random variable iLB − 1/2. More generally, the p-th order Bernoulli polynomial can
be expressed as

B(p)
n (x) = (x+ B(p))n,

where B(p) := B1 + · · ·+ Bp, for a set of p independent umbral symbols (or random variables)
(Bi)1≤i≤p satisfying the two following evaluation rules:

1: if B1 and B2 are independent symbols then

Bn1Bm2 = BnBm;

2: if B1 = B2, then
Bn1Bm2 = Bn+m

1 = Bn+m.

From the generating function (1.1), we deduce that

eBt =
t

et − 1
, et(2B+1) =

t

sinh t
, and et(2B

(p)+p) =

(
t

sinh t

)p

.

Similarly, we let LE be a random variable distributed according to the hyperbolic secant
density pE(t) = sech(πt), and define the Euler symbol E by

f(x+ E) = E
[
f

(
x+ iLE −

1

2

)]
=

∫
R
f

(
x+ it− 1

2

)
pE(t)dt.

Then, denoting E(p) = E1 + · · · + Ep, the sum of p independent Euler symbols, the Euler
polynomial of order p is expressed as

E(p)
n (x) = (x+ E(p))n. (2.2)

Also, we have

etE =
2

et + 1
, et(2E+1) = sech t, and et(2E

(p)+p) = sechp t.
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From the generating function

e2Bt =
2t

e2t − 1
=

t

et − 1
· 2

et + 1
= et(B+E),

we deduce that the symbols B and E satisfy the rule

2B = B + E , (2.3)

in the sense that for any suitable function f ,

f(x+ 2B) = f(x+ B + E).

The third and final special symbol that is useful to us is the uniform symbol U with the
evaluation rule

Un =
1

n+ 1
.

It can be interpreted as a random variable U uniformly distributed over the interval [0, 1],
namely, for any suitable function f ,

f(x+ U) = E[f (x+ U)] =

∫ 1

0
f(x+ t)dt.

Thus, we have in terms of generating functions

etU =
∑
n≥0

tn

(n+ 1)!
=
et − 1

t
, et(2U−1) =

sinh t

t
, and et(2U

(p)−p) =

(
sinh t

t

)p

,

where U (p) = U1 + · · ·+ Up denotes the sum of p independent uniform symbols.
An important link between the Bernoulli symbol B and the uniform symbol U is deduced

from the identity

et(U+B) = etUetB =
t

et − 1
· e

t − 1

t
= 1;

this shows that, for any suitable function f ,

f(x+ B + U) = f(x), (2.4)

so that the actions of these two symbols cancel each other.
In what follows, we will use independent copies of Bernoulli, Euler and uniform symbols.

In order to distinguish them, we shall denote independent uniform symbols by U , U ′, . . . and
U (p),U ′(p), . . . and similarly for the other two symbols.

2.2. Level sites with 1 loop and 2 loops. The general setting of this paper is a random
walk starting from the origin (in R or R3) and hitting some defined levels — either some points
on the line or some sphere in the 3-dimensional space, called sites. Looping back and forth,
each random walk can reach each site multiple times, and we are interested in the first time
the process reaches each of these sites. Before we derive identities, we shall first consider the
contribution of loops to the hitting times of these sites.

Consider one possible loop between sites a and b, with a < b. Let φa→b be the moment
generating function of the hitting time of site b starting from site a; also let φb→a be the
counterpart from b to a of φa→b. Let us further denote

Ia,b = φa→bφb→a;
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the random walk can loop an arbitrary number of times k ≥ 0 between sites a and b so that
the overall contribution of these visits to the generating function is∑

k≥0
Ika,b =

1

1− Ia,b
. (2.5)

Next, consider one possible loop between sites a and b, and another loop between sites c
and d, with a < b ≤ c < d. The possible contributions are as follows:

• k loops between sites a and b, followed by l loops between sites c and d, with k, l =
0, 1, . . ., contributing ∑

k, l≥0
Ika,bI

l
c,d =

1

1− Ia,b
· 1

1− Ic,d
;

• k1 loops between sites a and b, followed by l1 loops between sites c and d, then followed
by k2 loops between sites a, and b and finally l2 loops between sites c and d, with k1, l2
nonnegative and k2, l1 positive, contributing (by letting s = k1 = l2 and t = k2 = l1)∑

s≥0, t≥1
Isa,bI

t
c,dI

t
a,bI

s
c.d =

Ia,bIc,d
(1− Ia,b)2(1− Ic,d)2

;

• the general term will consist of k1 loops between sites a and b, followed by l1 loops
between sites c and d and so on, followed by kn loops between sites a and b and ln loops
between sites c and d, with k1, ln nonnegative and the other indices being positive,
contributing

In−1a,b In−1c,d

(1− Ia,b)n(1− Ic,d)n

to the generating function.

Therefore, the overall contribution of all possible loops over sites a and b, followed by loops
over sites c and d is∑

n≥1

In−1a,b In−1c,d

(1− Ia,b)n(1− Ic,d)n
=

1

1− (Ia,b + Ic,d)
=
∑
k≥0

(Ia,b + Ic,d)k. (2.6)

3. One-Dimensional Reflected Brownian Motion

3.1. Introduction. Consider the 1-dimensional reflected Brownian motion on R+. For sim-
plicity, we let

• φr→s(z) be the generating function of the hitting time of site s starting from site r;
• φr→s|Ct

(z) be the generating function of the hitting time of site s starting from site r

without reaching site t.

In the case of three consecutive sites a, b and c with 0 < a < b < c, the generating functions
of the corresponding hitting times can be found in [1, p. 198 and p. 355]: with w =

√
2z,

φa→b(z) =
cosh(aw)

cosh(bw)
, (3.1)

φb→a|Cc
(z) =

sinh((c− b)w)

sinh((c− a)w)
, (3.2)

φb→c|Aa
(z) =

sinh((b− a)w)

sinh((c− a)w)
. (3.3)
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Let us now label (N + 1) sites on the real positive line as 0 = a0 < a1 < a2 < · · · < aN .

3.2. The case of 3 sites. We consider here 3 sites 0 = a0 < a1 < a2; the study of hitting
times yields the following identity.

Theorem 3.1. Let 0 < a1 < a2, then for any positive integer n, the expansion of Euler
polynomials as a convex combination of higher-order Bernoulli polynomials is given by

En

(
x

2a2
+

3

2
− 2

a1
a2

)
− En

(
x

2a2
+

1

2

)
= Kn

∑
k≥0

pkB
(k+1)
n

(
x

4a1
+

a2
4a1

+
k

2

)
(3.4)

where Kn = (n+ 1)(1− 2a1/a2)2
nan1/a

n
2 and the coefficients

pk =
a1
a2

(
1− a1

a2

)k

, k ≥ 0

are the probability weights of a geometric distribution with parameter a1/a2.

Proof. From (3.1)–(3.3), we have

φ0→a1(z) = sech(a1w), φ0→a2(z) = sech(a2w),

φa1→a2|A0
(z) =

sinh(a1w)

sinh(a2w)
, φa1→0|ZZa2(z) =

sinh((a2 − a1)w)

sinh(a2w)
.

The process includes one possible loop between sites 0 and a1, so that by (2.5), we have

φ0→a2(z) = φ0→a1(z)φa1→a2|A0
(z)
∑
k≥0

(
φ0→a1(z)φa1→0|ZZa2(z)

)k
= sech(a1w) · sinh(a1w)

sinh(a2w)

∑
k≥0

(
sech(a1w)

sinh((a2 − a1)w)

sinh(a2wt)

)k

(3.5)

=
sinh(a1w)

cosh(a1w) sinh(a2w)
· 1

1− sinh((a2−a1)w)
cosh(a1w) sinh(a2w)

=
sinh(a1w)

cosh(a1w) sinh(a2w)− sinh((a2 − a1)w)
,

which coincides with φ0→a2(z) = sech(a2w), since

sinh((a2 − a1)w) = sinh(a2w) cosh(a1w)− cosh(a2w) sinh(a1w).

Meanwhile, we transform (3.5) into a form involving B, U and E as follows:

ea2w(2E+1) =
a1
a2
ea1w(2U−1)ea2w(2B+1)

×
∑
k≥0

ea1w(2E(k+1)+k+1)
(
a2 − a1
a2

)k

e(a2−a1)w(2U(k)−k)ea2w(2B(k)+k)

=ea1w(2U−1)+a2w(2B+1)

×
∑
k≥0

pke
a1w(2E(k+1)+k+1)+(a2−a1)w(2U(k)−k)+a2w(2B(k)+k).

Upon multiplying both sides by exw and comparing coefficients of wn, we get

(x+ 2a2E + a2)
n =

∑
k≥0

pk

[
x+ a1(2U − 1) + a2(2B + 1) + a1

(
2E(k+1) + k + 1

)
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+(a2 − a1)
(

2U (k) − k
)

+ a2

(
2B(k) + k

)]n
=
∑
k≥0

pk

(
x+ 2(a2 − a1)B + 2a1E(k+1) + 2a1B(k) + a2 + 2a1k

)n
,

where, in the last step, we have used the fact that B and U cancel each other according to
(2.4). Now, the substitution x 7→ x+ 2(a2 − 2a1)U yields(

x+ 2(a2 − 2a1)U + 2a2E + a2
)n

=
∑
k≥0

pk

(
x+ 2a1E(k+1) + 2a1B(k+1) + a2 + 2a1k

)n
.

Here, the left-hand side can be computed as

2nan2

(
E +

x

2a2
+

1

2
+

(
1− 2

a1
a2

)
U
)n

= 2nan2En

(
x

2a2
+

1

2
+

(
1− 2

a1
a2

)
U
)

= 2nan2

∫ 1

0
En

(
x

2a2
+

1

2
+

(
1− 2

a1
a2

)
t

)
dt

=
2nan2

[
En

(
x

2a2
+ 3

2 − 2a1
a2

)
− En

(
x

2a2
+ 1

2

)]
(

1− 2a1
a2

)
(n+ 1)

,

while, by (2.3) the right-hand side is∑
k≥0

pk

(
x+ 2a1E(k+1) + 2a1B(k+1) + a2 + 2a1k

)n
=
∑
k≥0

pk

(
x+ 4a1B(k+1) + a2 + 2a1k

)n
=
∑
k≥0

pk4nan1B
(k+1)
n

(
x

4a1
+

a2
4a1

+
k

2

)
.

Further simplification completes the proof. �

Remark 3.2. For uniformly spaced levels a1 = a2/2 = a/2, identity (3.4) collapses to the
trivial identity 0 = 0.

3.3. The case of 4 sites. We consider now the case of four sites 0 = a0 < a1 < a2 < a3
with two possible loops, one between a0 and a1 and one between a1 and a2. For the sake of
simplicity, we consider only the case where all sites are uniformly distributed, with ai = i for
i = 0, 1, 2, 3, and obtain the following identity.

Theorem 3.3. For any positive integer n, the Euler polynomial of degree n can be expressed
as a linear combination of higher-order Euler polynomials of the same degree as

En(x) =
∑
k≥0

3k−n

4k+1
E(2k+3)

n (3x+ k). (3.6)

Proof. By (2.6) and the basic identity sinh(2w) = 2 sinh(w) cosh(w), we have

φ0→3(z) =φ0→1(z)φ1→2|A0
(z)φ2→3|A1

(z)
∑
k≥0

(
φ0→1(z)φ1→0|A2

(z) + φ1→2|A0
(z)φ2→1|A3

(z)
)k

= sech(w)

(
sinh(w)

sinh(2w)

)2∑
k≥0

(
sech(w)

sinh(w)

sinh(2w)
+

sinh(w)

sinh(2w)
· sinh(w)

sinh(2w)

)k

=
∑
k≥0

1

4

(
3

4

)k

sech2k+3(w).
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Therefore, we deduce

e3w(2E+1) =
∑
k≥0

3k

4k+1
ew(2E(2k+3)+2k+3),

namely,

e6wE =
∑
k≥0

3k

4k+1
e2wE

(2k+3)+2wk.

Multiplying both sides by exw and comparing coefficients of wn, we obtain

(x+ 6E)n =
∑
k≥0

3k

4k+1

(
x+ 2k + 2E(2k+3)

)n
,

where the left-hand side is

(x+ 6E)n = 6n
(
E +

x

6

)n
= 6nEn

(x
6

)
,

and the right-hand side is∑
k≥0

3k
(
x+ 2k + 2E(2k+3)

)n
4k+1

=
∑
k≥0

3k2n
(
x
2 + k + E(2k+3)

)n
4k+1

=
∑
k≥0

3k

4k+1
2nE(2k+3)

n

(x
2

+ k
)
.

Simplification completes the proof. �

In the general case of 4 sites that are not uniformly spaced, we obtain a much more com-
plicated result as follows:

Theorem 3.4. For any 0 < a1 < a2 < a3 and arbitrary positive integer n, we have

En

(
x

2a3
+

1

2

)
=
∑

k≥l≥0
qk,l

(
a1
2a3

)n

E(l)
n

(
x

a1
+ 2

a2 − a1
a1

B + 2
a3 − a2
a1

B′ + 2
a2 − a1
a1

U (l)

+2U ′(k−l) + 2
a2 − a1
a1

B′(k−l) +
rk,l
a1

)
,

with the coefficients

qk,l =

(
k

l

)
(a2 − a1)l+1ak−l+1

1 (a3 − a2)k−l

ak+1
2 (a3 − a1)k−l+1

,

and

rk,l = a3 + (2k − 2l)a2 + (3l − k + 1)a1.

Proof. Apply (2.6) to obtain

φ0→a3(z) =φ0→a1(z)φa1→a2|A0
(z)φa2→a3|ZZa1(z)

×
∑
k≥0

(
φ0→a1(z)φa1→0|ZZa2(z) + φa1→a2|A0

(z)φa2→a1|ZZa3(z)
)k

= sech(a1w) · sinh(a1w)

sinh(a2w)
· sinh((a2 − a1)w)

sinh((a3 − a1)w)

×
∑
k≥0

(
sech(a1w) · sinh((a2 − a1)w)

sinh(a2w)
+

sinh(a1w)

sinh(a2w)
· sinh((a3 − a2)w)

sinh((a3 − a1)w)

)k
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=
∑
k≥0

1

sinhk+1(a2w)

k∑
l=0

(
k

l

)
sechl+1(a1w) sinhl+1((a2 − a1)w)

× sinhk−l+1(a1w) sinhk−l((a3 − a2)w)

sinhk−l+1((a3 − a1)w)
.

Now, we multiply both sides by exw and compare coefficients of wn, with the notation

qk,l =

(
k

l

)
(a2 − a1)l+1ak−l+1

1 (a3 − a2)k−l

ak+1
2 (a3 − a1)k−l+1

and
rk,l = a3 + (2k − 2l)a2 + (3l − k + 1)a1,

to obtain

(x+ 2a3E + a3)
n =

∑
k≥l≥0

qk,l

[
x+ 2(a2 − a1)B + 2(a3 − a2)B′ + a1E(l) + 2(a2 − a1)U (l)

+2a1U ′(k−l) + 2(a2 − a1)B′(k−l) + rk,l

]n
.

Applying (2.2) yields the result. �

4. Bessel Process in R3

4.1. Introduction. We consider now a Bessel process in R3. Using similar notations φa→b(z)
and φa→b|Cc

(z) as in the previous section and considering sites labelled a, b, and c with a < b < c,
that are now concentric spheres of radii a, b, and c, we will need the following formulas from
[1, pp. 463–464]:

φa→b(z) =
b sinh(aw)

a sinh(bw)
, (4.1)

φb→c|Aa
(z) =

c sinh((b− a)w)

b sinh((c− a)w)
, (4.2)

φb→a|Cc
(z) =

a sinh((c− b)w)

c sinh((c− a)w)
. (4.3)

Remark 4.1. One can easily check that

φa1→0|ZZa2(z) =
0 · sinh((a2 − a1)w)

a2 sinh((a2 − 0)w)
= 0,

so that the first possible loop is now between a1 and a2, unlike in the 1-dimensional case, where
the first possible loop was between the origin 0 and the first site a1.

4.2. The case N = 3. In the case of three concentric spheres of arbitrary radii, we deduce the
following expression of a Bernoulli polynomial of degree n in terms of higher-order Bernoulli
polynomials of the same degree.

Theorem 4.2. For 0 < a1 < a2 < a3 and a positive integer n, we have

Bn

(
x+ a3

2a3

)
=

(
a2
a3

)n∑
k≥0

pkB
(k+1)
n

[
x

2a2
+ βk +

a2 − a1
a2

U +
a3 − a2
a2

U (k) +
a1
a2
U ′(k)

+
a3 − a1
a2

B(k+1)

]n
,
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with

pk = (1− α)αk, βk =
a3 + 2ka2 − 2ka1

2a3
,

and

α =
(a3 − a2)a1
(a3 − a1)a2

.

The special case of uniformly spaced radii, where ai = i for i = 1, 2, 3, is as follows.

Corollary 4.3. For positive integer n, we have

3n+1

n+ 1

[
Bn+1

(
x

6
+

5

6

)
−Bn+1

(
x

6
+

1

2

)]
=

3

4

∑
k≥0

(
1

4

)k

E(2k+2)
n

(
x+ 3 + 2k

2

)
. (4.4)

The specialization of this identity to the case x = 0 and n odd is as follows.

Corollary 4.4. The even-index Bernoulli number B2m can be expressed as a linear combina-
tion of higher-order Euler polynomials as

B2m =
m

(1− 21−2m)(32m − 1)

∑
k≥0

(
1

4

)k

E
(2k+2)
2m−1

(
k +

3

2

)
.

Proof. Take x = 0 and n = 2m−1 in (4.4). By Entries 24.4.27 and 24.4.32 of [8], the left-hand
side becomes

32m

2m

[
B2m

(
5

6

)
−B2m

(
1

2

)]
=

32m

2m

[
1

2
(1− 21−2m)(1− 31−2m)B2m + (1− 21−2m)B2m

]
=

32m

2m
(1− 21−2m)B2m

(
1− 31−2m

2
+ 1

)
=

3

4m
(1− 21−2m)(32m − 1)B2m,

while the right-hand side is ∑
k≥0

3

4

(
1

4

)k

E
(2k+2)
2m−1

(
k +

3

2

)
.

After simplification, we obtain the desired result. �

Proof of Theorem 4.2. Remarking that lim
x→0

[sinh(xt)/x] = t, from (4.1)–(4.3), we have

φa0→a1(z) =
a1w

sinh(a1w)
, φa0→a3(z) =

a3w

sinh(a3w)
, φa1→a2|ZZa0(z) =

a2
a1
· sinh(a1w)

sinh(a2w)
,

φa2→a1|ZZa3(z) =
a1
a2
· sinh((a3 − a2)w)

sinh((a3 − a1)w)
, φa2→a3|ZZa1(z) =

a3
a2
· sinh((a2 − a1)w)

sinh((a3 − a1)w)
,

so that

φa0→a3(z) =
∑
k≥0

φa0→a1(z)φa1→a2|ZZa0(z)
(
φa2→a1|ZZa3(z)φa1→a2|ZZa0(z)

)k
φa2→a3|ZZa1(z)

=

(
a1w

sinh(a1w)

)(
a2 sinh(a1w)

a1 sinh(a2w)

)(
a3 sinh((a2 − a1)w)

a2 sinh((a3 − a1)w)

)
×
∑
k≥0

(
sinh((a3 − a2)w)

sinh((a3 − a1)w)

sinh(a1w)

sinh(a2w)

)k
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=a3w sinh((a2 − a1)w)
∑
k≥0

sinhk((a3 − a2)w) sinhk(a1w)

sinhk+1((a3 − a1)w) sinhk+1(a2w)
.

Then, we obtain

ea3w(2B+1) =ew(a2−a1)(2U−1)
∑
k≥0

{
rke

w[(a3−a2)(2U(k)−k)+a1(2U ′(k)−k)] (4.5)

×ew[(a3−a1)(2B(k+1)+k+1)+a2(2B′(k+1)+k+1)]
}

where

rk =
a3(a2 − a1)(a3 − a2)kak1

(a3 − a1)k+1ak+1
2

.

In analogy to the proof of Theorem 3.1, we multiply both sides of (4.5) by ewx and look at
the coefficients of wn. For simplicity, we let

sk = a3 + 2ka2 − 2ka1,

so that

(2a3)
nBn

(
x+ a3

2a3

)
=
∑
k≥0

rk

[
x+ 2a3B + a3 + sk + 2(a2 − a1)U + 2(a3 − a2)U (k)

+2a1U ′(k) + 2(a3 − a1)B(k+1) + 2a2B′(k+1)
]n
.

The special case ai = i, with

βk = sk
∣∣
ai=i

= 3 + 2k and ρk = rk
∣∣
ai=i

=
3

4

(
1

4

)k

,

produces

6nBn

(
x+ 3

6

)
=
∑
k≥0

ρk

(
x+ 3 + 2k + 2U + 2U (k) + 2U ′(k) + 4B(k+1) + 4B′(k+1)

)n
=
∑
k≥0

ρk

(
x+ 3 + 2k + 2U (2k+1) + 4B(2k+2)

)n
=
∑
k≥0

ρk

(
x+ 3 + 2k + 2U (2k+1) + 2B(2k+2) + 2E(2k+2)

)n
=
∑
k≥0

ρk

(
x+ 3 + 2k + 2B + 2E(2k+2)

)n
=
∑
k≥0

ρk2nE(2k+2)
n

(
x+ 3 + 2k

2
+ B

)
,

namely,

3nBn

(
x

6
+

1

2

)
=
∑
k≥0

ρkE
(2k+2)
n

(
x+ 3 + 2k

2
+ B

)
.

Replacing x by x+ 2U completes the proof. �
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4.3. The case N = 4. We have now two possible loops among the sites with radii a2, a3 and
a4. Following the notation in Subsection 2.2, we have

Ia1,a2 = φa1→a2|ZZa0(z)φa2→a1|ZZa3(z) =
sinh(a1w) sinh((a3 − a2)w)

sinh(a2w) sinh((a3 − a1)w)

and similarly,

Ia2,a3 = φa2→a3|ZZa1(z)φa3→a2|ZZa4(z) =
sinh((a2 − a1)w) sinh((a4 − a3)w)

sinh((a3 − a1)w) sinh((a4 − a2)w)
.

In order to obtain a simple expression for Ia1,a2 + Ia2,a3 , we further assume that the levels are
uniformly distributed, i.e., ai = i, for i = 0, 1, 2, 3, 4, so that

Ia1,a2 + Ia2,a3 = I1,2 + I2,3 =
2 sinh2(w)

sinh2(2w)
=

sech2(w)

2
.

This produces the following identity.

Theorem 4.5. For any positive integer n, we have

Bn+1

(
x+4
8

)
−Bn+1

(
x
8

)
n+ 1

=
1

22n+1

∑
k≥0

1

2k+1
E(2k+2)

n

(x
2

+ k
)
. (4.6)

Proof. From

φ0→4(z) = φ0→1(z)φ1→2|�0
(z)φ2→3|�1

(z)φ3→4|�2
(z)
∑
k≥0

(I1,2 + I2,3)
k ,

namely,

4w

sinh(4w)
=

w

sinhw
· 2 sinhw

sinh(2w)
· 3 sinhw

2 sinh(2w)
· 4 sinhw

3 sinh(2w)

∑
k≥0

sech2k(w)

2k

=
w

sinh(2w)

∑
k≥0

sech2k+2(w)

2k
,

we deduce that

e4w(2B+1) =
1

2
e2w(2B′+1)

∑
k≥0

1

2k
ew(2E(2k+2)+2k+2).

After multiplying by exw, applying the change of variable x 7→ x − 4, and identifying the
coefficients of wn on both sides, we have

(x+ 8B)n =
∑
k≥0

(
x+ 4B′ + 2E(2k+2) + 2k

)n
2k+1

.

DECEMBER 2019 101



THE FIBONACCI QUARTERLY

Now we apply the substitution x 7→ x+ 4U to obtain for the left-hand side,

(x+ 8B + 4U)n =

∫ 1

0
(x+ 8B + 4u)n du

=
(x+ 8B + 4)n+1 − (x+ 8B)n+1

4(n+ 1)

=
8n+1

4(n+ 1)

((
B +

x+ 4

8

)n+1

−
(
B +

x

8

)n+1
)

=
23n+1

(
Bn+1

(
x+4
8

)
−Bn+1

(
x
8

))
n+ 1

,

while for the right-hand side,∑
k≥0

(
x+ 2E(2k+2) + 2k

)n
2k+1

= 2n
∑
k≥0

(
E(2k+2) + x+2k

2

)n
2k+1

= 2n
∑
k≥0

E
(2k+2)
n

(
x
2 + k

)
2k+1

.

Further simplification completes the proof. �

Remark 4.6. Note the analogy between (4.6) and (3.6), whereas these identities are obtained
from two different setups.

5. Conclusion

We have shown how the setup of random processes allows us to obtain nontrivial identi-
ties among higher-order Bernoulli and Euler polynomials. The underlying principle of this
approach is that these special functions appear naturally in the generating functions of the
hitting times of these random processes.

Several remarks are in order at this point:
- the identities obtained from this approach are not of the usual, convolutional type — see,

for example [2], for such identities. Rather, they are connection-type identities between the
usual Bernoulli and Euler polynomials and their higher-order counterparts;

- these identites inherently involve a mixture of higher-order Bernoulli and Euler polynomi-
als;

- the interest of this approach is that each term in such a decomposition can be related to
a physical object, namely one loop in a trajectory of a random process;

- this work should be considered as only a first approach to a more general project in which
the richness of the possible setups for random walks is expected to generate a number of
non-trivial identities about more general special functions.
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