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Abstract. The Gelin-Cesáro identity states that for integers n ≥ 2,

Fn−2Fn−1Fn+1Fn+2 − F 4
n = −1,

where {Fn} is the Fibonacci sequence. Horadam generalized the Fibonacci sequence by defin-
ing the sequence {Wn} where W0 = a, W1 = b, and Wn = pWn−1 − qWn−2 for n ≥ 2 and a,
b, p and q are integers and q 6= 0. Using this sequence, Melham and Shannon generalized the
Gelin-Cesáro identity by proving that for integers n ≥ 2,

Wn−2Wn−1Wn+1Wn+2 −W 4
n = cqn−2(p2 + q)W 2

n + c2q2n−3p2,

where c = pab − qa2 − b2. We will discover and prove some similar high degree generalized
Fibonacci identities.

1. Introduction

Let {Fn} and {Ln} be the Fibonacci and Lucas sequences, respectively. Many authors have
studied Fibonacci identities and generalized Fibonacci identities. For example, Gelin stated
and Cesáro proved [2, p. 401] that for integers n ≥ 2,

Fn−2Fn−1Fn+1Fn+2 − F 4
n = −1. (1)

To generalize (1), we need the following definition due to Horadam [3, p. 161].

Definition 1. Let {Wn} be defined by W0 = a, W1 = b, and Wn = pWn−1−qWn−2 for n ≥ 2,
where a, b, p, and q are integers and q 6= 0. Let c = pab− qa2 − b2.

Melham and Shannon [5] generalized (1) by proving that for integers n ≥ 2,

Wn−2Wn−1Wn+1Wn+2 −W 4
n = cqn−2(p2 + q)W 2

n + c2q2n−3p2. (2)

In this paper, we will generalize and prove some similar high degree generalized Fibonacci
identities.

2. Generalization of the Melham and Shannon Identity

To generalize (2), we need the following definition.

Definition 2. Let {Un} be defined by U0 = 0, U1 = 1, and Un = pUn−1 − qUn−2 for n ≥ 2,
where p and q are integers and q 6= 0.

The sequence {Un} is the fundamental sequence of Lucas [4]. With this definition, we can
state a generalization of the Melham and Shannon identity.

Theorem 1. Let r and s be positive integers and n ≥ r + s be an integer. Then

Wn−r−sWn−rWn+rWn+r+s = W 4
n + cqn−r−s(qsU2

r + U2
r+s)W

2
n + c2q2n−2r−sU2

rU
2
r+s. (3)

We note that when r = 1 and s = 1, (3) becomes (2).
The proof of (2) can be found in Melham and Shannon [5]. The proof of Theorem 1 is similar

to the proof of (2), but with a few modifications. Before we begin the proof of Theorem 1, we
require more definitions and a lemma from Melham and Shannon [5, pp. 82–83].
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Definition 3. Let {Yn} be defined by Y0 = a1, Y1 = b1, and Yn = pYn−1 − qYn−2 for n ≥ 2,
where a1, b1, p, and q are integers and q 6= 0.

Definition 4. Let s be a nonnegative integer. Let

Ψ(s) = (pa1b− qaa1 − bb1)Us + (ab1 − a1b)Us+1.

Lemma 1. Let n be a nonnegative integer and r and s be positive integers. Then

WnYn+r+s −Wn+rYn+s = Ψ(s)qnUr. (4)

Now we can begin the proof of Theorem 1.

Proof. In (4), replacing n by n− r and s by r gives

Wn−rYn+r −WnYn = Ψ(r)qn−rUr. (5)

Replacing r by r + s in (5), we have

Wn−r−sYn+r+s −WnYn = Ψ(r + s)qn−r−sUr+s. (6)

Adding (5) and (6) gives

Wn−rYn+r + Wn−r−sYn+r+s = 2WnYn + Ψ(r)qn−rUr + Ψ(r + s)qn−r−sUr+s. (7)

Subtracting (6) from (5) gives

Wn−rYn+r −Wn−r−sYn+r+s = Ψ(r)qn−rUr −Ψ(r + s)qn−r−sUr+s. (8)

Square both sides of (7), and similarly for (8). Then subtract the latter of the equations
resulting from this from the former to obtain

4Wn−r−sWn−rYn+rYn+r+s

= 4W 2
nY

2
n + 4qn−r−s(qsΨ(r)Ur + Ψ(r + s)Ur+s)WnYn + 4Ψ(r)Ψ(r + s)q2n−2r−sUrUr+s. (9)

Divide both sides of the equation by 4. Now, if (a1, b1) = (a, b), then {Wn} = {Yn}, Ψ(r) =
cUr, and Ψ(r + s) = cUr+s. Substituting these quantities in (9), we see that (9) becomes (3).
This is what we wanted to prove. �

Note that if r = 1 and s = 1, then (3) becomes (2). Also, note that if a = 0, b = 1, p = 1,
and q = −1, then {Wn} = {Fn}. Thus from (3), we have the following identity for Fibonacci
numbers.

Fn−r−sFn−rFn+rFn+r+s = F 4
n + (−1)n−r−s−1((−1)sF 2

r + F 2
r+s)F

2
n + (−1)sF 2

r F
2
r+s.

3. A Generalized Sixth Degree Identity

Next, we wish to prove the following theorem.

Theorem 2. Let r and s be positive integers and n ≥ r + s be an integer. Then

3Wn−r−sW
2
n−rW

2
n+rWn+r+s + W 3

n−r−sW
3
n+r+s (10)

= 4W 6
n + 6cqn−r−s(qsU2

r + U2
r+s)W

4
n + 3c2q2n−2r−2s(q2sU4

r + 2qsU2
rU

2
r+s + U4

r+s)W
2
n

+ c3q3n−3r−3s(3q2sU4
rU

2
r+s + U6

r+s).

Again, the proof of Theorem 2 is similar to the proof of (2), but with a few modifications.
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Proof. We start the proof of Theorem 2 as we started the proof of Theorem 1. Instead of
squaring, we cube both sides of (7), and similarly for (8). The latter of the resulting equations
is then subtracted from the former to obtain

6W 2
n−rY

2
n+rWn−r−sYn+r+s + 2W 3

n−r−sY
3
n+r+s (11)

= 8W 3
nY

3
n + 12W 2

nY
2
n Ψ(r)qn−rUr + 12W 2

nY
2
n Ψ(r + s)qn−r−sUr+s

+ 6WnYnΨ(r)2q2n−2rU2
r + 12WnYnΨ(r)q2n−2r−sΨ(r + s)UrUr+s

+ 6WnYnΨ(r + s)2q2n−2r−2sU2
r+s + 6q3n−3r−sΨ(r)2Ψ(r + s)U2

rUr+s

+ 2q3n−3r−3sΨ(r + s)3U3
r+s.

Divide both sides of the equation by 2. Again, if (a1, b1) = (a, b), then {Wn} = {Yn},
Ψ(r) = cUr, and Ψ(r + s) = cUr+s. Substituting these quantities in (11), we see that (11)
becomes (10). This is what we wanted to prove. �

Again, if a = 0, b = 1, p = 1, and q = −1, then {Wn} = {Fn}. Thus from (10), we have the
following identity for Fibonacci numbers.

3Fn−r−sF
2
n−rF

2
n+rFn+r+s + F 3

n−r−sF
3
n+r+s

= 4F 6
n + 6(−1)n−r−s−1((−1)sF 2

r + F 2
r+s)F

4
n + 3(F 4

r + 2(−1)sF 2
r F

2
r+s + F 4

r+s)F
2
n

+ (−1)n−r−s−1(3F 4
r F

2
r+s + F 6

r+s).

4. A Generalized 2kth Degree Identity

Next, we wish to prove the following theorem which generalizes the previous theorems.

Theorem 3. Let r and s be positive integers, k ≥ 2 be an integer, and n ≥ r+s be an integer.
Then

2
∑
i≥1

(
k

2i− 1

)
(Wn−rWn+r)

k+1−2i(Wn−r−sWn+r+s)
2i−1 (12)

=
k−1∑
i=0

(
k

i

)
(2W 2

n)k−iciqin−ir−is(qsU2
r + U2

r+s)
i

+ 2ckqkn−kr−ks
∑
i≥1

(
k

2i− 1

)
q(k+1−2i)sU2(k+1−2i)

r U
2(2i−1)
r+s .

Again, the proof of Theorem 3 is similar to the proof of (2), but with a few modification.

Proof. We start the proof of Theorem 3 as we started the proof of Theorem 1. But, this
time, we consider (7) and (8) and let (a1, b1) = (a, b). Then {Wn} = {Yn}, Ψ(r) = cUr, and
Ψ(r + s) = cUr+s. Substituting these quantities in (7) and (8), we obtain

Wn−rWn+r + Wn−r−sWn+r+s = 2W 2
n + cqn−rU2

r + cqn−r−sU2
r+s (13)

and

Wn−rWn+r −Wn−r−sWn+r+s = cqn−rU2
r − cqn−r−sU2

r+s. (14)
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Instead of squaring, we raise both sides of (13) to the kth power, and similarly for (14). The
latter of the resulting equations is then subtracted from the former to obtain

(Wn−rWn+r + Wn−r−sWn+r+s)
k − (Wn−rWn+r −Wn−r−sWn+r+s)

k

=
k−1∑
i=0

(
k

i

)
(2W 2

n)k−i(cqn−rU2
r + cqn−r−sU2

r+s)
i

+ (cqn−rU2
r + cqn−r−sU2

r+s)
k − (cqn−rU2

r − cqn−r−sU2
r+s)

k.

Expanding the products on both sides of the equation and collecting and canceling terms gives

2
∑
i≥1

(
k

2i− 1

)
(Wn−rWn+r)

k+1−2i(Wn−r−sWn+r+s)
2i−1

=
k−1∑
i=0

(
k

i

)
(2W 2

n)k−iciqin−ir−is(qsU2
r + U2

r+s)
i

+ 2ck
∑
i≥1

(
k

2i− 1

)
(qn−rU2

r )k+1−2i(qn−r−sU2
r+s)

2i−1.

Simplifying some more, we obtain

2
∑
i≥1

(
k

2i− 1

)
(Wn−rWn+r)

k+1−2i(Wn−r−sWn+r+s)
2i−1

=
k−1∑
i=0

(
k

i

)
(2W 2

n)k−iciqin−ir−is(qsU2
r + U2

r+s)
i

+ 2ckqkn−kr−ks
∑
i≥1

(
k

2i− 1

)
q(k+1−2i)sU2(k+1−2i)

r U
2(2i−1)
r+s .

This is what we wanted to prove. �

Again, if a = 0, b = 1, p = 1, and q = −1, then {Wn} = {Fn}. Thus from (12), we have the
following identity for Fibonacci numbers.

2
∑
i≥1

(
k

2i− 1

)
(Fn−rFn+r)

k+1−2i(Fn−r−sFn+r+s)
2i−1

=

k−1∑
i=0

(
k

i

)
(2F 2

n)k−i(−1)in−ir−is+i((−1)sF 2
r + F 2

r+s)
i

+ 2(−1)k
∑
i≥1

(
k

2i− 1

)
(−1)kn−kr−ks(−1)(k+1−2i)sF 2(k+1−2i)

r F
2(2i−1)
r+s .

5. A Generalization of a Fourth Degree Fibonacci Identity

Next, we give another fourth degree Fibonacci identity from [1, p. 46]. If n is a nonnegative
integer, then

FnF
3
n+4 − F 3

n+2Fn+6 = (−1)n+1Fn+3Ln+3. (15)

To state a generalization to (15), we need a definition due to Rabinowitz [6, p. 166].
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Definition 5. Let n be an integer. Then

Xn = Wn+1 − qWn−1.

The sequence {Xn} may be considered to be a companion sequence to {Wn}, in the same
sense that the Lucas sequence is the companion of the Fibonacci sequence. This sequence will
be useful in stating our next theorem.

Theorem 4. Let n be a nonnegative integer. Then

WnW
3
n+4 −W 3

n+2Wn+6 = cp3qnWn+3Xn+3. (16)

Proof. Let n be a nonnegative integer. Let x = Wn and y = Wn+1. Then, after some
substitutions and collecting terms, we have

Wn = x

Wn+1 = y

Wn+2 = py − qx

Wn+3 = (p2 − q)y − pqx

Wn+4 = (p3 − 2pq)y + (−p2q + q2)x

Wn+5 = (p4 − 3p2q + q2)y + (−p3q + 2pq2)x

Wn+6 = (p5 − 4p3q + 3pq2)y + (−p4q + 3p2q2 − q3)x

Xn+3 = (p3 − 3pq)y + (−p2q + 2q2)x.

We need one more quantity, cqn. From Horadam [3, p. 171, eq. (4.3)], we have that

cqn = WnWn+2 −W 2
n+1 = x(py − qx)− y2 = −qx2 + pxy − y2.

After substitutions and some algebraic manipulations, the left side of (16) simplifies to

(−p6q3 + 2p4q4)x4 + (3p7q2 − 8p5q3 + 2p3q4)x3y

+ (−3p8q + 9p6q2 − 3p4q3)x2y2 + (p9 − 2p7q − 3p5q2 + 2p3q3)xy3

+ (−p8 + 4p6q − 3p4q2)y4.

It can easily be shown that the right side of (16) also simplifies to this algebraic expression.
Therefore, the left side and right side of (16) are equal. This completes the proof of the
theorem. �

6. A Generalization of a Fifth Degree Fibonacci Identity

Finally, we present a fifth degree Fibonacci identity from [1, p. 46]. If n is a nonnegative
integer, then

F 2
nF

3
n+5 − F 3

n+1F
2
n+6 = (−1)n+1L3

n+3. (17)

A generalization of (17) is presented in the following theorem.

Theorem 5. Let n be a nonnegative integer. Then

W 2
nW

3
n+5 −W 3

n+1W
2
n+6 = cqnXn+3((2p

3 − 3pq)W 2
n+3 + (p7 − 2p5q + p3q2)cqn). (18)
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Proof. Let n be a nonnegative integer. Let x = Wn and y = Wn+1. We require all the
quantities from the proof of Theorem 4. After substitutions and some algebraic manipulations,
the left side of (18) simplifies to

(−p9q3 + 6p7q4 − 12p5q5 + 8p3q6)x5

+ (3p10q2 − 21p8q3 + 51p6q4 − 48p4q5 + 12p2q6)x4y

+ (−3p11q + 24p9q2 − 69p7q3 + 84p5q4 − 39p3q5 + 6pq6)x3y2

+ (p12 − 9p10q + 29p8q2 − 39p6q3 + 19p4q4 − 3p2q5)x2y3

+ (2p9q − 14p7q2 + 32p5q3 − 26p3q4 + 6pq5)xy4

+ (−p10 + 8p8q − 22p6q2 + 24p4q3 − 9p2q4)y5.

It can easily be shown that the right side of (18) also simplifies to this algebraic expression.
Therefore, the left side and right side of (18) are equal. This completes the proof of the
theorem. �
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