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Abstract. Several recent papers and presentations have introduced and studied the index
histograms of one-parameter Tagiuri Generated Families of Fibonacci identities. The purpose
of this paper is to prove a Unification Theorem which: (i) provides a unified proof of several
results, (ii) reduces proofs to routine computations, and (iii) allows formulation and proof of
the Tagiuri Histogram Conjecture for a broad range of cases.

1. Introduction

One-parameter Tagiuri Generated Families (TGF) of Fibonacci identities were presented
in [1], [2], [3], and [4]. Index histograms of these identities show interesting properties. The
main purpose of this paper is to present a Unification Theorem, unifying the proofs of the
main theorems in [2], [3], and [4]. Besides unifying the proofs of these main theorems, the
Unification Theorem reduces these proofs to routine computations. The Unification Theorem
allows us to formulate and prove the Tagiuri Histogram Conjecture for a wide range of special
cases.

Each TGF is a one-parameter family of Fibonacci identities. Throughout this paper, we let
q ≥ 1 be the parameter indexing the members of this family. To generate the q-th member of
a TGF, we must specify certain items. We do not assume familiarity with the prior papers on
this subject. Rather, we provide a self-contained presentation in this paper. Each of Sections
2 through 6 introduces one item needed for production of the q-th identity of a TGF and its
associated index graph. For illustrative purposes, throughout the paper, besides presenting
the general case, we use the q = 2nd identity of the TGF presented in [4]. Throughout
the paper, this identity is called the illustrative example. Historically, the idea of presenting
the definitions and proofs by interleaving the illustrative example with general proofs was
introduced in [2].

2. The Product P

To produce the q-th identity of a TGF we first need to provide a product Pq = P of Fibonacci
numbers (throughout the paper we drop the subscript q when it will cause no confusion). To
do this, we must specify a positive integer m, the number of multiplicands in P, as well as an
index set of integers,

I = 〈i1, . . . , im〉. (2.1)

Throughout the paper, angle brackets indicate ordered sets while braces and parentheses
indicate unordered sets.

Using the specifications of I and m just given, we then define

P =

m∏
j=1

Fn+ij , (2.2)

where as usual, here, and throughout the paper, n is a parameter varying over the integers.
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Note that there is some abuse of language since the actual indices are 〈n + i1, . . . , n + im〉,
not 〈i1, . . . , im〉, but this will cause no confusion.

Example 2.1. For the illustrative example, we have

m = 5, I = 〈i1, . . . , i5〉 = 〈−2,−1, . . . , 2〉, P =

2∏
j=−2

Fn+j . (2.3)

3. The Start Identity

After defining P, we next must specify a positive integer sp and a non-negative integer sn
with sp > sn. These integers respectively indicate the number of positive and negative copies
of P in the start identity which is given by

(sp − sn)P = spP − snP. (3.1)

Note that the start identity is trivially true.
We let

s = sp + sq, (3.2)

the total number of copies of P on the right-hand side of the start identity.

Example 3.1. For the illustrative example,

sp = 3, sq = 2, s = sp + sq = 5, P = 3P − 2P. (3.3)

To explain the “s” in sp, sn, s note that if we expand the right-most equation in (3.3) we
obtain

P = P + P + P − P − P (3.4)

so that the right-hand-side of this equation has five summands corresponding to the five copies
of P used. In the sequel we will refer to these five copies of P as the 1st copy of P , the second
copy of P, etc., where we count the copies of P sequentially from left to right, so that the first
three copies of P have a plus sign while the last two copies of P have a negative sign.

4. The Tagiuri Replacement Transformation

Tagiuri’s identity [5, p. 114] states that for all integers n, x, y we have

Fn+xFn+y = FnFn+x+y + (−1)nFxFy. (4.1)

The Tagiuri identity generalizes both the Cassini identity [5, p. 74] and the Catalan identity
[5, p. 83].

The idea introduced in [1] is that the Tagiuri Identity can be used to transform products
and the identities containing them. Using (2.1), two indices ik1 , ik2 ∈ I, 1 ≤ k1, k2 ≤ m are
selected. Using (2.2), we say that we apply Tagiuri at the indices ik1 , ik2 to the product P if we
replace the product Fn+ik1

Fn+ik2
in P with the right-hand side of (4.1) with x = ik1 , y = ik2 .

For future reference, by (4.1), (2.2), and (2.1), the result of applying Tagiuri at ik1 , ik2 to
P is

FnFn+ik1+ik2

∏
1≤j≤mq

ij /∈{ik1 ,ik2}

Fn+ij + (−1)nFik1
Fik2

∏
1≤j≤mq

ij /∈{k1,k2}

Fn+ij . (4.2)

We refer to (4.2) as the transformed P or the P transformed at indices ik1 , ik2 .
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Example 4.1. For the illustrative example, by (2.3), if say ik1 = i1 = −2, ik2 = i2 = −1, then
the transformed P is

FnFn−3FnFn+1Fn+2 + (−1)nF−2F−1FnFn+1Fn+2. (4.3)

As we noted above in connection with (2.1), there is some abuse of language in saying that
we apply Tagiuri to the indices ik1 , ik2 since the actual indices are n+ ik1 , n+ ik2 , but this will
cause no confusion in the sequel.

5. The Transformation Set

To motivate the definition in this section, we first examine the illustrative example.

Example 5.1. Equation (4.3) presents the result of applying the Tagiuri transformation to the
first and second indices in the index set, (2.3), of the illustrative example. By (3.3) there are
five copies of P in the start identity of the illustrative example. To complete the construction
of the illustrative example, we must specify for each of these s = 5 copies of P in the start
identity the pairs of indices to which Tagiuri is applied. We indicate this collection of pairs of
indices with T. T is an ordered set of s members, one for each copy of P in the start identity,
with each member of T equaling an unordered pair of indices.

T = 〈(−2,−1), (−1, 0), (0, 1), (1, 2), (2,−2)〉 (5.1)

.
We interpret T in the manner just described. First, we apply Tagiuri to the indices i1 =

−2, i2 = −1 in the first copy of P in the start identity; then we apply Tagiuri to the indices
i2 = −1, i3 = 0 in the second copy of P in the start identity. We continue this application
process to all five copies of P in the start identity. The result is the transformed start identity
and is in fact the q = 2nd identity of the TGF studied in [4],

Fn−2Fn−1FnFn+1Fn+2 = (5.2)

FnFn−3

(
FnFn+1Fn+2

)
+ (−1)nF−2F−1

(
FnFn+1Fn+2

)
+ (5.3)

FnFn−1

(
Fn−2Fn+1Fn+2

)
+ (5.4)

FnFn+1

(
Fn−2Fn−1Fn+2

)
− (5.5)

FnFn+3

(
Fn−2Fn−1Fn

)
− (−1)nF1F2

(
Fn−2Fn−1Fn

)
− (5.6)

FnFn

(
Fn−1FnFn+1

)
− (−1)nF2F−2

(
Fn−1FnFn+1

)
, (5.7)

where the summands containing F0 have been removed (because F0 = 0) but no other simplifi-
cation was done. The reasons for this lack of simplification will be discussed below. For future
reference, we note that (5.2)− (5.7) will be useful in illustrating various cases in the proof of
the Unification Theorem.

For the general case, we define an ordered set of m unordered pairs by

T = 〈(k1,1, k1,2), (k2,1, k2,2), . . . , (ks,1, ks,2)〉, with kj,1, kj,2 ∈ I, kj,1 6= kj,2, 1 ≤ j ≤ s. (5.8)

The q-th identity of the general TGF is obtained by applying Tagiuri to the s copies of P in
the start identity at the indices ikj,1 , ikj,2 , 1 ≤ j ≤ s. Since (3.1) is true, the result of applying
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the Tagiuri identity (4.1) to the start identity must yield a true result. This proves that all
identities of a TGF are true.

In all previous papers and presentations, there was concern about the compatibility of the
transformation sets, Tq, q = 1, 2, . . . for a given TGF. This necessitated some complicated
notation including use of infinite words and complicated definitions using indices. However,
these compatibility criteria are not used in the proof of the Unification Theorem. Consequently,
we are dropping this requirement. This greatly simplifies the notation and presentation used
in this paper.

6. Index Graphs

To motivate the concepts presented in this section, we first discuss the illustrative example
and then present the general theory.

Example 6.1. The illustrative example is given in (5.2)–(5.7) which describes a Fibonacci
identity true for all integer values of n. However, (5.2)–(5.7) appears unintuitive, lacking
elegance, and lacking punchiness. The approach advocated in [1] to identify elegant patterns
is to count the indices of the form n + x, x an integer, occurring on the right-hand side of
(5.2)–(5.7).

In counting occurrences certain conventions have to be observed to avoid the effect of can-
cellations. The various TGF examined so far seem to have little if any cancellation for large
values of q. However, we have no way of proving this. Therefore, we adopt the following
conventions: After transforming each P in the start identity we further assume that i) all
parenthetical expressions are expanded, ii) all summands with coefficient zero eliminated, iii)
all powers are counted with multiplicity, iv) all non-zero constant coefficients and (−1)n do
not contribute to the count, v) no similar terms are coalesced, and vi) only indices that have
an occurrence of n are counted.

To illustrate these conventions: Fn(Fn+1 +Fn+2) has a count of two occurrences of Fn after
parenthetical expansion. F 2

n has a count of two occurrences of Fn while 2F−1Fn−1 has only one
occurrence of Fn−1. Although we do not allow gathering similar terms, constant coefficients
can arise from the initial multiplicands in the second summand of (4.2).

We let yx indicate the number of occurrences of Fn+x in (5.3)–(5.7). We have

y−3 = 1, y−2 = 4, y−1 = 6, y0 = 12, y1 = 6, y2 = 4, y3 = 1, yx = 0 for |x| > 3. (6.1)

The collection of all pairs (x, yx), x ∈ N, can naturally be represented by a graph, with
integer points on the graph connected with line segments. Figure 1 presents the graph for the
illustrative example. Historically, actual histograms were used in [1], [4], and [2]. However,
for the TGF presented in [3] a graph was more convenient than a histogram. Accordingly, in
this paper we use graphs, vs. histograms. For the Histogram Conjecture we retain use of the
term histogram since the conjecture was presented with that terminology in earlier papers.

For the general case, we define for integer x

yx = the number of occurrences of Fn+x

on the right hand side of the transformed start identity. (6.2)

The main theorems of [4], [2], and [3] present a closed formula for yx, x ∈ N.

7. Previous TGF

Three TGF have been studied and presented in [2], [3], and [4]. There are many items
defining a TGF. To provide the most intuitive appeal, we provide in Table 1 below the source
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Figure 1. Index histogram for the Illustrative Example

of presentation, the start identity, the index set Iq and the transformation set Tq. Related
functions such as mq and sq can be inferred from these. For example, for the TGF in source FQ,
using (3.1), (3.2), and (2.1) respectively, we infer that sp = q + 1, sn = q, s = sp + sn = 2q + 1,
and mq = 2q + 1, the number of integers between −q and q including endpoints. P can then
be constructed using (2.2).

Source Start Identity Index Set, I
FQ [4] P = (q + 1)P − qP 〈−q, . . . , q〉

WCNT [2] P = (q + 1)P − qP 〈−(q + 1), . . . ,−1, 1, . . . , q + 1〉
MASON II [3] 2qP = 4qP − 2qP 〈−2q, . . . ,−1, 1, . . . , 2q〉

Source Transformation set, T
FQ [4] 〈(−q,−(q − 1)), (−(q − 1),−(q − 2)), . . . , (q − 1, q), (q,−q)〉

WCNT [2] 〈(−q − 1),−q), . . . , (−q − 1,−1), (−q − 1, 1), . . . , (−q − 1, q + 1)〉
MASON II [3] See below in the caption

Table 1. Presentation medium, start identity, index set I, and trans-
formation set T for three TGF. For MASON II, let 〈x1, x2, . . . x4q〉 = I
= 〈−2q, . . . ,−1, 1, . . . 2q〉. Then the first six members of T are 〈(x1, x2),
(x1, x3), (x1, x4), (x2, x3), (x2, x4), (x3, x4)〉; the next six members of T are
〈(x5, x6), (x5, x7), (x5, x8), (x6, x7), (x6, x8), (x7, x8)〉. This process continues un-
til all members of I are used, each four consecutive members of I generating
six members of T as just shown.
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8. Proof Overview

Our goal in the next four sections is to derive a closed formula for yx, as defined by (6.2),
for the qth identity of an arbitrary TGF. For the next four sections we fix q. We first review
all necessary background.

Recall that the start identity, presented in (3.1), which has s (see (3.2)) copies of P (see
(2.2)) on its right-hand side is transformed by applying Tagiuri to these s copies of P at the
s index pairs in T (see (5.8)). Equation (4.2) provides the result for applying Tagiuri to P
at one pair of indices. The right-hand side of the qth identity is the sum of the s copies of
transformed P.

For the illustrative example, the index set I, the product P, the start identity, s, and T are
given by (2.3), (3.3), and (5.1). The values of yx are given by (6.1). The q = 2nd identity is
given by (5.2)–(5.7).

It will be useful in the sequel to use the following terminology about (4.2). We refer to∏
1≤j≤mq

ij /∈{ik1 ,ik2}
Fn+ij as the product in the first summand. We refer to

∏
1≤j≤mq

ij /∈{k1,k2}
Fn+ij as the

product in the second summand. We refer to (−1)nFik1
Fik2

∏
1≤j≤mq

ij /∈{k1,k2}
Fn+ij as the second

summand. Finally, we refer to FnFn+ik1+ik2
as the the initial multiplicands. (Note: We will

never, in the proof, need to refer to the initial multiplicands in the first summand; therefore,
the phrase initial multiplicands has a unique meaning.)

We can illustrate use of this terminology with the illustrative example. Technically, (5.4)
has no second summand. Nevertheless, we will, for example, say that the second summand in
the transformed copy of P in (5.4) vanishes. This should cause no confusion.

Each of the next four sections will prove a formula for yx for one case. Each section will
provide a general proof and may also use the illustrative example which is presented in (5.2)–
(5.7). We note that the parenthetical expressions in (5.2)–(5.7) contain the products in the
first and second summand of (4.2) so that the initial multiplicands are clearly indicated. This
will be useful in the sequel

In general, the closed formula for yx will be a sum. We will use the language of “con-
tribution” to describe how each summand or the underlying items it counts “contributes”
to yx.

9. The case when x 6= 0, x /∈ I

Since by assumption x /∈ I, it follows from (4.2) that only the initial multiplicands could
contribute to yx. For each of the s transformed copies of P, the products in the first and second
summands could not contribute to yx since each multiplicand in them satisfies Fn+ij , for some
ij ∈ I.

This naturally motivates defining for integer x,

Cx = the number or count of (ik1 , ik2) ∈ T such that ik1 + ik2 = x. (9.1)

.
We then have the result,

yx = Cx, for x 6= 0, x /∈ I. (9.2)

Example 9.1. For the illustrative example, by (2.3), ±3 /∈ I. By (9.1) and (5.1), C−3 = C3 =
1. Therefore, by (9.2), y−3 = y3 = 1, which in fact is confirmed by (6.1).
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10. The case when x = 0, 0 /∈ I

In the illustrative example, 0 ∈ I, so we cannot motivate the proof in this case with the
illustrative example. However, the discussion in the previous section for the case x 6= 0, x /∈ I,
still applies. More specifically, we have the following:

C0 contributes to y0.
For each of the s transformed P, their initial multiplicands in (4.2) always have an occurrence

of Fn. Therefore, we have an additional contribution of s to y0.
As discussed in the last section, for each of the s transformed copies of P, their products

in the first and second summand do not contribute to y0 since we assume 0 /∈ I. We have
therefore proved that

y0 = C0 + s, if 0 /∈ I. (10.1)

11. The case when x = 0, 0 ∈ I

The arguments made in Sections 9 and 10 hold for this case also. For each of the s copies
of transformed P, their initial multiplicands in the first summand always have an occurrence
of Fn. Thus, they contribute s to y0.

Similarly, by (9.1), there is a contribution of Cx to yx from the initial multiplicands in the
first summands of the s transformed copies of P that arise from the Cx pairs (ik1 , ik2) ∈ T
such that ik1 + ik2 = 0.

By assumption, 0 ∈ I. This implies that for each of the s copies of transformed P, the
products in their first summands will contain Fn unless the pair of indices of T to which
Tagiuri is applied to P contains a 0. One can see this by the bounds for the product in the
first summand of (4.2) which require ij ∈ I, 1 ≤ j ≤ m, ij /∈ (ik1 , ik2). This motivates generally
defining

cx = number of members of T whose components contain an occurrence of x. (11.1)

It follows that the total contribution to y0 from the products in the first summands of the s
transformed copies of P is s− c0.

We use lower case “c” in (11.1) and capital “C” in (9.1); this should cause no confusion.
A similar argument shows that there is a total contribution of s−c0 arising from the second

summands in the s transformed copies of P. (Note, the second summand will only vanish if 0
is a component of the member pair of T to which Tagiuri is applied to P ; but these c0 pairs
are already subtracted from s.)

We summarize as follows:

y0 = 2(s− c0) + C0 + s, if 0 ∈ I. (11.2)

Example 11.1. To illustrate these contributions, we may inspect the illustrative example
(5.2)–(5.7). As can be seen: (1) there are s = 5 copies of Fn in the initial multiplicands of
(5.3)–(5.7). (2) There is an additional occurrence of Fn in the initial multiplicands in the first
summand of (5.7) corresponding to the index pair (2,−2) of T whose components sum to 0.
(3) Finally, by (5.1), 0 occurs in two member pairs of T, (−1, 0) and (0, 1), implying c0 = 2.
We then confirm that there is a contribution of s − c0 = 5 − 2 = 3 to y0 from the products
in the first summands as seen in (5.3), (5.6), (5.7); there is a similar contribution of 3 to y0
from the second summands. Contrastively, the products in (5.4) and (5.5) do not contribute
occurrences of Fn to y0.

In total, y0 = 5 + 1 + 3 + 3 = 12 which can be confirmed by either inspecting (5.3)–(5.7) or
by (6.1).
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12. The case x 6= 0, x ∈ I.

This is the most complex case. We therefore slowly go through the illustrative example,
step by step.

Example 12.1. By (2.3), x = −2,−1, 1, 2 each satisfy x 6= 0, x ∈ I. For purposes of illustra-
tion we fix x = 1. By (6.1), y1 = 6.

First, as in other cases of the proof, by (5.1) and (9.1) we have a contribution of C1 = 1,
to y1 arising from the pair (0, 1) ∈ T.

Second, we have a total contribution of s − c1 to yx arising from the products in the first
summands of the s transformed copies of P. By (5.1) and (11.1), c1 = 2 since (0, 1) and (1, 2)
are both members of T. We can confirm that s− c1 = 5− 2 = 3 transformed copies of P in the
illustrative identity, (5.3), (5, 4), and (5.7), each have an occurrence of Fn+1 in the product of
their first summands.

A problem however arises with the second summands. There are s = 5 transformed copies of
P . Two of these transformed coipes of P, (5.5) and (5.6), arise from a Tagiuri transformation
involving 1; therefore Fn+1 does not occur in their second summands and consequently, these
two transformed copies of P must be subtracted from s = 5. Two transformed P, (5.4), (5.5),
have no second summand because when applying Tagiuri to P at indices (−1, 0) or (0, 1), the
second summand vanishes because it is multiplied by F0 = 0.

If we proceeded naively, we would find a total contribution of s−c1−c0 = 5−2−2 = 1 from
the second summands in the 5 transformed copies of P . Thus y1 would have contributions of
1 from C1, s − c1 = 5 − 2 = 3 from the products in the first summands of the 5 transformed
copies of P and s− c1 − c0 = 5− 2− 2 = 1 from the second summands in the 5 transformed
copies of P. But then y1 = 1 + 3 + 1 = 5 when in reality by inspection of (5.3)–(5.7) or by
(6.1), y6 = 1. What went wrong?

The problem arises because the two transformed P with a Tagiuri transformation involving
a 1 are (5.5) and (5.6) and the two transformed P arising from a Tagiuri transformation
involving a 0 are (5.4) and (5.5). Thus, we should subtract 3 corresponding to these three
transformed copies, but instead have subtracted 4. The reason for this discrepancy is that
the second summand in (5.5) simultaneously contains a 1 and 0 corresponding to the member
(0, 1) ∈ T. Thus we subtracted it twice. We therefore have to add one of the subtracted copies
back in.

This motivates generally defining

zx = number of members of T equaling (0, x). (12.1)

By (5.1) and (12.1), z1 = 1. Therefore, the total contribution of all s transformed P from their
second summands is s− c0 − c1 + z1 = 5− 2− 2 + 1 = 2. We then have y1 = C1 + (s− c1) +
(s− c1 − c0 + z1) = 1 + 3 + 2 = 6, as required.

For the general case, (12.1) is still used to define zx. We have 1) contributions of Cx to yx
from members of T whose components add to x, 2) a total contribution from all s transformed
copies of P of s − cx from the products of their first summands, and 3) a total contribution
for all s transformed copies of P of s − c0 − cx + zx from their second summands. We have
proven

yx = Cx + (s− cx) + (s− cx − c0 + zx), if x 6= 0 and x ∈ I. (12.2)

13. The Unification Theorem and the Tagiuri Histogram Conjecture

We summarize the previous 4 sections. The Unification Theorem unifies previous proofs as
well as reduces these proofs to routine computations.
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Theorem 13.1. The Unification Theorem. Consider a TGF whose identities are indexed
by q ≥ 1. For q ≥ 1, Iq, Pq, sq, the start identity, and Tq are given by (2.1), (2.2), (3.2), (3.1),
and (5.8), respectively. Then, for integer x, the count of occurrences of Fn+x in the right-hand
side of the q-th identity of the TGF, is given by (9.2), (10.1), (11.2) and (12.2).

14. Previous Results

The Unification Theorem both unifies the proofs of previously proven results as well as
reduces them to computations. The specifications of the three TGF used in previous papers
and presentations are presented in Table 1. Tables 2 and 3 present yx, s, cx, Cx, zx for the FQ
and WCNT TGF. The MASON II TGF will not be dealt with via a table.

Fn+x Restrictions on x yx s cx Cx zx
Fn 6q 2q + 1 2 1 0
Fn±1 4q − 2 2q + 1 2 1 1
Fn±e 2 ≤ |e| ≤ q, e even 4q − 4 2q + 1 2 0 0
Fn±o 3 ≤ |o| ≤ q, o odd 4q − 3 2q + 1 2 1 0
Fn±x q + 1 ≤ |x| ≤ 2q, x odd 1 2q + 1 0 1 0
Fn±x |x| > 2q 0 2q + 1 0 0 0

Table 2. Values of yx, s, cx, Cx, zx for the FQ TGF.

In this section we illustrate how routine computations yield a proof of the formula for yx
for the FQ TGF. The proof for the WCNT TGF is similar and omitted. The MASON II TGF
is treated in a separate section.

Table 1 presents T for the FQ example. Using the T presented in Table 1 for the FQ TGF
we see that by (11.1), cx = 2 for x ∈ I, and cx = 0 otherwise. By (12.1), we see that zx = 1
for x ∈ {−1, 1}, and zx = 0 otherwise. Equation (9.1) motivates adding the components of
each member of T yielding {−(2q − 1),−(2q − 3), . . . , 2q − 1, 0}. This proves that Cx = 1 if
x = 0 or x ∈ {−(2q − 1),−(2q − 3), . . . , 2q − 1} and Cx = 0 otherwise.

Using these values of cx, Cx, zx and the value of s inferred by applying (3.1) and (3.2) to
the start identity in Table 1, we can easily plug in the formulas (11.2), (12.2), (9.2), and
(10.1) and verify the values of yx. For example, when x = 1, (in the row of Table 2 beginning
Fn±1) we are in the case x 6= 0, x ∈ I. By (12.2), yx = Cx + s − cx + s − cx − c0 + zx =
1 + 2q + 1− 2 + 2q + 1− 2− 2 + 1 = 4q − 2, as required. If |x|> 2q then x 6= 0, x /∈ I, so that
by (9.2), yx = 0 (as seen in the last row of Table 2.)

15. Tagiuri Histogram Conjecture

The Tagiuri Histogram conjecture was only partially formulated in [4]. It asserted that
for a given TGF, there is a constant independent of q such that the number of distinct yx
(as q varies) is uniformly bounded by this constant. However, the conditions which would
enable this to be true were never formulated. We are now able to formulate and prove the
conjecture using the Unification Theorem. An index graph for the FQ TGF was presented
in Figure 1. Sample index graphs for the TGFs of WCNT and MASON II are presented in
Figures 2 and 3. A glance at these three graphs and similar graphs for other values of q shows
that the cardinality of distinct (integer) yx is very small.

The proof of the Unification Theorem provides necessary insight to this observation. For
example if x 6= 0, x /∈ I then (9.2) states that yx = Cx. Equation (9.1) states that Cx is the
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Figure 2. Index graph for the q = 5th identity of the TGF presented in WCNT.

Figure 3. Index histogram for the TGF presented in MASON II with q = 3.

number of solutions to ik1 + ik2 = x, (ik1 , ik2) ∈ T. In the three TGF studied, the number of
solutions to this equation is finite and hence the number of possible yx is also finite.

Theorem 15.1. Tagiuri Histogram Conjecture. Fix a TGF. Suppose there is a constant
independent of q such that as q varies, cx, Cx, and zx are uniformly bounded in absolute value
by this constant. Then there is a constant independent of q such that for each q the number
of distinct values of yx is bounded by that constant.

DECEMBER 2019 63



THE FIBONACCI QUARTERLY

Proof. If q is fixed, then s is fixed. By the Unification Theorem the only way yx can vary is
according to the values of cx, Cx, and zx. This completes the proof. �

Note, that although the number of yx for each q is uniformly bounded, the values of yx will
differ for each q, and in fact the maximum of these values is unbounded as q goes to infinity.

In practice, in the three TGF studied so far, the bound on the number of distinct yx is
under 10. Nevertheless, the graphs show variety and richness.

We have already pointed out that we are retaining the term “histogram” for historical
reasons. However, the illustrative figures presented use graphs.

Fn+x Restrictions on x yx s cx Cx zx
Fn 2q + 2 2q + 1 0 1 0

Fn+x 1 ≤ x ≤ q + 1 4q 2q + 1 1 0 0
Fn−x 1 ≤ x ≤ q, 4q + 1 2q + 1 1 1 0

Fn−(q+1) 0 2q + 1 2q+1 0 0
Fn−x q + 2 ≤ x ≤ 2q + 1, 1 2q + 1 0 1 0
Fn±x |x| > 2q + 1 0 2q + 1 0 0 0

Table 3. Values of yx, cx, Cx, zx, and s for the WCNT TGF.

16. MASON II TGF

The TGF presented in MASON II cannot be compactly presented in a table. However, the
description of the TGF can be elegantly and compactly described using 7 very simply stated
(and simply proven) formulae. To develop and prove the seven formulae we i) refer to Table 1
which presents the start identity, I, and T for the MASON II case, and ii) note, that the
definitions of yx, Cx, cx, and zx are given in (6.2), (9.1), (11.1), and (12.1) respectively.

Formula 1: s = 6q.

Proof. This follows immediately from (3.2), (3.1), and the start identity presented in Table 1,
2qP = 4qP − 2qP. �

Formula 2: zx = 0.

Proof. By Table 1, 0 /∈ I, and therefore 0 is not a component of any pair of T . �

Formula 3: cx = 3 for x ∈ I and cx = 0 otherwise.

Proof. By the description of T in the caption of Table 1, each four consecutive members of
I generate 6 members of T ; for example, x1, x2, x3, x4 ∈ I gives rise to the 6 members of T,
(x1, x2), (x1, x3), (x1, x4), (x2, x3), (x2, x4), (x3, x4). It should be immediately clear that each
xi ∈ I occurs exactly three times. �

Formula 4: Cx = 0 if |x| ≥ 4q.

Proof. By (9.1), Cx is the sum of the components of a member of T. Each of the members
of T have two distinct components in I. By Table 1, the biggest two members of I are 2q
and 2q − 1. Similarly, the smallest two members of I are −(2q),−(2q − 1). The result follows
immediately. �

Formula 5: cx = c−x;Cx = C−x.
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Proof. Recall by Formula 3, cx = 3 for x ∈ I. By Table 1, I is symmetric about 0. Similarly,
using (9.1), if ij1 + ij2 = x, for (ij1 , ij2) ∈ T, then since I and T are symmetric about 0,
(−ij1 ,−ij2) ∈ I and therefore −ij1 − ij2 = −x. Thus the number of members of T whose
components sum to x equals the number of members of T whose components sum to −x
showing Cx = C−x. �

Formula 6: We assume 0 ≤ x < 4q, since by Formulas 4 and 5, for x < 0, we have
C−x = Cx. There are two cases to consider according to the parity of q.

q even.

Cx =


0 if x ≡ 0, 1, 2 (mod 8)

1 if x ≡ 3, 4, 6, 7 (mod 8)

2 if x ≡ 5 (mod 8).

q odd. First, for all q, C0 = 2, C1 = C3 = 1, C2 = 0. For 4 ≤ x < 4q,

Cx =


0 if x ≡ 4, 5, 6 (mod 8)

1 if x ≡ 0, 2, 3, 7 (mod 8)

2 if x ≡ 1 (mod 8).

Formula 7: yx = y−x.

Proof. By the Unification Theorem, yx is a function of s, cx, Cx, zx and these four functions
are symmetric about 0. �

These 7 formulae are sufficient to calculate the values of s, cx, Cx, and zx. The Unification
Theorem then allows computation of yx. The 7 formulae can also be used to write a simple
program to generate values. Figure 3 was generated by such a program.

17. Conclusion

In this paper, we have unified the treatment of several TGF. The unification allows a unified
treatment of proofs, reduction of proofs to routine computations, as well as an elegant proof
of the Tagiuri Histogram conjecture.

There are several future avenues of research. First, in this paper, we have assumed one
application of Tagiuri per summand in the start identity. In Caen [4], an example was presented
where several applications per summand were allowed. This invites generalization of the results
of this paper.

Glancing at Figures 1–3, we see a wide variety of histogram shapes. The classification of
histogram shapes (as well as the definition of histogram shape) is another interesting avenue
of research.

For large enough q, say for q ≥ 3, the identities of the TGF for FQ, WCNT, and MASON
II do not simplify. To avoid the problem of simplification, the Unification Theorem has been
developed under assumption that coalescing of like terms is not done. It would be worthwhile
to identify conditions on T assuring lack of possible simplification for large q.

Finally, there is the open conjecture of recognizing that a complex identity is in fact a
member of a TGF. This would allow short proofs of certain complex identities.
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