
RE3COUNTING THE RATIONALS

SAM NORTHSHIELD

Abstract. In 1999, Neil Calkin and Herbert Wilf wrote “Recounting the rationals” which
gave an explicit bijection between the positive integers and the positive rationals. We find
several different (some new) ways to construct this enumeration and thus create pointers for
generalizing. Next, we use circle packings to generalize and find two other enumerations.
Surprisingly, the three enumerations are all that are possible by using this technique. The
proofs involve, among other things, “negative” continued fractions, Chebyshev polynomials,
Euler’s totient function, and generalizations of Stern’s diatomic sequence. Finally we look at
some of the remarkable similarities – and differences – of these sequences.

1. Introduction

In 1999, Neil Calkin and Herbert Wilf wrote their charming “Recounting the rationals” [1]
which gave an explicit listing of the positive rationals beginning thus:
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Throughout this paper, we label this sequence (rn)∞n=1.

There are many ways to arrive at this sequence. In Section 2, we present several. In
particular, we recall the Calkin-Wilf tree which arranges the positive rationals on the vertices
of a rooted binary tree. To show that all positive rationals appear on the tree, we introduce
the “Tree Theorem”, a useful tool for enumeration that we also use later in Section 3. Another
natural setting for (rn) is in terms of Stern’s diatomic array and in terms of Stern’s diatomic
sequence. We are quickly led to a “semi-recursive” formula

rn = 2ν2(n) + 1− 1

rn−1

where ν2(n) is the usual valuation function that counts the number of times 2 divides n.
From this, we find a new source for (rn) in terms of a greedy algorithm: for a given list

of rationals [l0, l1, . . . , lk], append lk+1 defined as the least N − 1/lk not already on the list.
Starting with [∞], iterates of this algorithm gives (rn).

This leads to “minus continued fractions”: for

(a1, a2, a3, . . .) := a1 −
1

a2 −
1

a3 − · · ·

,

rn = (1), (3, 1), (1, 3, 1), (5, 1, 3, 1), (1, 5, 1, 3, 1), . . .

and also

rn = (1), (2), (1, 2), (3), (1, 3), (2, 2), (1, 2, 2), . . . .

Research supported in part by SUNY-Plattsburgh travel grant. Thanks also to hospitality of organizers of
the Fibonacci Conference of 2018.
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Finally, since Stern’s sequence has closed formulas – both a Binet formula and a formula as
a sum across Pascal’s triangle mod 2 [14] – we can create closed formulas for (rn).

Through all these ways of constructing (rn) we are led to many possible directions to
generalize. Our initial choice actually goes further afield to varieties of circle packings. In
Section 3, we look at the family of Ford circles and how they are parameterized by the rationals.
It turns out that Stern’s sequence appears here. More general circle packings are introduced
and, from them, we construct analogues of Stern’s sequence. From these, we construct two
other sequences of the positive rationals that begin:
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Surprisingly, the three enumerations are all that are possible by using the “circle” technique
– all others necessarily contain irrational numbers as well. A fourth is introduced as well; here
we get rationals in Q(φ)+ (we conjecture that we get all of them).

In Section 4, we look at some of the remarkable similarities – and differences – of these
sequences. In particular, semi-recursive formulas, tree inducing functions, greedy algorithms,
and generating functions are all studied. Further, we look at the “degree” of each sequence
(the critical exponent δ for which lim supxn/n

δ is finite).
Ponton [18] has recently found these three sequences as well as some corresponding trees

that generate them. His paper and this one are still quite complementary.

2. The basic enumeration, and several ways to get it

In this section, we consider the enumeration of the positive rationals
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The reader is invited to find a pattern for generating this sequence before reading further.
Our first way of constructing this sequence is by arranging the positive rationals on a tree

and then reading off the entries.

2.1. Tree Theorem. A function from a countable set S to itself can be thought of as inducing
a digraph, with vertex set S, where one assigns to each vertex a directed edge from that vertex
to its image under f . It is generally possible to get loops (corresponding to fixed points of
f) and cycles. The following theorem gives a condition that guarantees that the digraph is
actually a union of disjoint rooted trees.

Theorem 2.1 (Tree Theorem). If S is a countable set, F : S → S with set of fixed points S0,
and Φ : S → Z+ such that, for all x 6∈ S0,

Φ(F (x)) < Φ(x),

then F canonically arranges the elements of S on the vertices of a collection of rooted directed
trees (with set of respective roots S0).
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Proof. On the vertex set S, let E be the set of all directed edges [x, F (x)] where x ranges over
all elements of S − S0 and define G to be the directed graph (S, E).

Let Fn denote the nth iterate of F . For any x ∈ S, the sequence Φ(Fn(x)) is a decreasing
sequence of positive integers but, by the well-ordering of Z+, cannot be strictly decreasing.
Hence, there exists (a unique) z ∈ S0 and N ∈ Z+ so that FN (x) = z. Let σ(x) denote the
minimum such N . It follows that there is a path of length σ(x) from x to z. Since F is a
function (so the out-degree of every vertex is at most 1), that path is unique. Hence, the
connected component of G containing x is a directed tree with root z. The result follows. �

This theorem is a discrete version of the “contraction mapping theorem” which states that,
no matter the starting point, the iterates of any strict contraction on a set must converge to
a fixed point.

2.2. Calkin-Wilf Tree. We introduce a tree that first appeared in “Recounting the rationals”
[1] by Calkin and Wilf. Our approach to showing it contains all the positive rationals will be
by the Tree Theorem.

Consider F : x 7−→ max

{
x

1− x
, x− 1

}
and Φ(a/b) = a+ b. It is easy to see that for x 6= 1,

Φ(F (x)) < Φ(x) and so, by the Tree Theorem, every positive rational appears exactly once on
the tree.

The map F may be inverted in order to get a procedure for actually constructing the tree:

F−1(x) =

{
x

1 + x
, x+ 1

}
.

Reading this tree like a book, but right to left, gives the desired enumeration of the positive
rationals:
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2.3. Stern’s diatomic array and sequence. Probably the clearest setting for understand-
ing the sequence (rn) is Stern’s diatomic array, sometimes thought of as “Pascal’s triangle
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with memory”, which begins thus:

1 1
1 2 1
1 3 2 3 1
1 4 3 5 2 5 3 4 1
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1
. . . . . . . . . . . . . . . . .

It is defined recursively as follows: Start with row 1 1. Then, given the nth row, define the
next one by copying the numbers on the nth row but inserting, in each gap, the sum of the
two numbers above.

The numbers in the diatomic array, read like a book (but deleting the right-most column
of 1s), form what is known as Stern’s diatomic sequence which begins:

an = 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, . . .

It is easy to see that it is defined recursively by

a1 = 1, a2n = an, a2n+1 = an + an+1. (1)

Every pair (a, b) of consecutive numbers in the diatomic array corresponds, via (a, b) 7→ a
b ,

to the rationals appearing on the Calkin-Wilf tree and so

rn =
an+1

an
. (2)

See [14] and its references, and [19], sequence A002478, for information about this excep-
tional, and exceptionally well studied, sequence.

2.4. A semi-recursive formula. A “semi-recursive” formula for (rn) is a formula of the form
rn = g(rn−1, dn) where (dn) is some fixed sequence and g is some function.

Let

νk(n) := max{j : kj |n}

be the number of times k divides n.
Since

a2m+2 + a2m = a2m+1

and

a2m+1 + a2m−1 = am+1 + am−1 + 2am,

it follows by induction on ν2(n) that

an+1 + an−1
an

= 2ν2(n) + 1.

From this and equation (2), it follows that

rn = 2ν2(n) + 1− 1

rn−1
. (3)
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2.5. A recursive formula. Note that a2n/a2n+1 = an/(an+an+1) < 1 and so ba2n/a2n+1c =
0 = ν2(2n + 1). Further, if ban−1/anc = ν2(n), then ba2n−1/a2nc = b(an−1 + an)/anc =
ν2(n) + 1 = ν2(2n). By induction, ⌊

1

rn

⌋
= ν2(n+ 1).

Substituting this into equation (3), we find the recursive formula

rn+1 = 2

⌊
1

rn

⌋
+ 1− 1

rn
(4)

which can be rewritten as

rn+1 = 1 +
1

rn
− 2

{
1

rn

}
(5)

where {x} denotes the fractional part of x. This remarkable result is equivalent to one first
noticed by Moshe Newman (see Ponton [18]).

Finally, in terms of Stern’s sequence, we may rewrite this as

an+1 = an + an−1 − 2(an−1 mod an). (6)

2.6. A greedy algorithm. Define a list of numbers inductively as follows: given a list
[l1, l2, . . . , lk], append lk+1, defined as the smallest number of the form n − 1/lk (n ∈ Z+)
not already on the list. Starting with the list [1], we get
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To see that this sequence is the same as (rn), note that by equations (1) and (2), for all n,

r2n = 1 + rn and r2n+1 = 1− 1

r2n
.

Hence, for every odd n, rn < 1 and r2kn = k + rn.
Let m be the smallest number for which lm 6= rm. By equation (4), rm = M − 1

rm−1
for

some integer M and, for some N ≤M ,

lm = N − 1

lm−1
= N − 1

rm−1
.

Hence

lm/2j = rm/2j = N − j − 1

rm−1
is already on the list and thus M = N .

By induction, the greedy algorithm gives the sequence (rn).

2.7. Minus continued fractions. Keeping with the nomenclature of Katok [8], we call ex-
pressions of the following form “minus continued fractions”:

(a1, a2, a3, a4, . . .) := a1 −
1

a2 −
1

a3 −
1

a4 − · · ·

.

By equation (3), the positive rationals

1

1
,
2

1
,
1

2
,
3

1
,
2

3
,
3

2
,
1

3
,
4

1
,
3

4
, . . .

DECEMBER 2019 115



THE FIBONACCI QUARTERLY

can be written in terms of minus continued fractions:

(1), (3, 1), (1, 3, 1), (5, 1, 3, 1), (1, 5, 1, 3, 1), (3, 1, 5, 1, 3, 1), (1, 3, 1, 5, 1, 3, 1), . . .

with the sequence 2ν2(n) + 1 in plain sight.
Minus continued fractions are not unique and we have an alternative formulation. Given a

formal list ` = [w1, w2, . . . , wn], define 1+` := [1+w1, w2, . . . , wn] and 1∗` := [1, w1, w2, . . . , wn].
Starting with the empty list `0 := [ ], define{

`2n := 1 + `n,

`2n+1 := 1 ∗ `2n.
(8)

We get the sequence of lists

[1], [2], [1, 2], [3], [1, 3], [2, 2], [1, 2, 2], [4], [1, 4], [2, 3], [1, 2, 3], [3, 2], . . .

When turned into minus continued fractions:

(1), (2), (1, 2), (3), (1, 3), (2, 2), (1, 2, 2), (4), (1, 4), (2, 3), (1, 2, 3), (3, 2), . . .

we get our enumeration again (exercise for the reader).

2.8. Closed formulas. It is easy to see that, by equation (1) (see [14], section 3), the gener-
ating function of (an+1) satisfies

A(x) = (1 + x+ x2)A(x2) =
∏
n≥1

(1 + x2
n

+ x2
n+1

).

Note: This implies that an+1 counts the number of “hyperbinary representations” of n (i.e.,
the number of ways to represent n as a sum of powers of two with no power appearing more
than twice).

This leads to a closed formula: letting 〈a, b〉2 be 0 or 1 according to whether a, b share
non-zero digits in their respective binary expansions or not,

an+1 =
∑

a+2b=n

〈a, b〉2. (10)

By a well-known theorem of Kummer [6, 9] stating that νp

((
a+b
b

))
is the number of carries

when adding a and b base p,

〈a, b〉2 =

[(
a+ b

b

)
mod 2

]
and we have the analogous formulas: the first is the representation of Fibonacci numbers as
diagonal sums in Pascal’s triangle, the second, due to Carlitz [2],

Fn+1 =
∑

a+2b=n

(
a+ b

b

)
, an+1 =

∑
a+2b=n

[(
a+ b

b

)
mod 2

]
.

Here is a further similarity with Fibonacci numbers: Recalling Binet’s formula

Fn+1 =
φn+1 − φn+1

φ− φ
=

n∑
k=0

φkφ
n−k

,

we have

an+1 =

n∑
k=0

σs2(k)σs2(n−k) (11)
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where σ is a primitive sixth root of unity and s2(n) is the number of ones in the binary
expansion of n (see [14], Prop. 4.4).

Therefore we have two closed formulas for rn:

rn =

∑
a+2b=n

[(
a+b
b

)
mod 2

]
∑

a+2b=n−1

[(
a+b
b

)
mod 2

]
and

rn =

∑n
k=0 σ

s2(k)σs2(n−k)∑n−1
k=0 σ

s2(k)σs2(n−1−k)
.

2.9. Ways to view (rn). In conclusion, we summarize some of the places that the enumera-
tion
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occurs:

• a tree defined by a contraction on Q+,

• an+1

an
where an is Stern’s diatomic sequence,

• a semi-recursive formula rn = 2ν2(n) + 1− 1
rn−1

,

• a recursive formula rn+1 = 1 +
1

rn
− 2

{
1

rn

}
,

• a greedy algorithm,

• minus continued fractions (two different ways), and

• closed formulas based on those for (an).

3. Circle packings and some new enumerations

For real x, y, let Cx,y be the circle of center (x/y, 1/2y2) and radius 1/2y2. Every such circle
is thus above and tangent to the horizontal axis. By the Pythagorean theorem, Cx,y and Cu,v
are tangent to each other – we write Cx,y||Cu,v – if and only if |xv − yu| = 1.

A Möbius transformation is a function of the form(
a b
c d

)
(z) :=

az + b

cz + d

where the defining matrix is non-singular. Möbius transformations preserve circles and tan-
gencies. Further, it is not hard to see ([15], Lemma 6) that when ad− bd = 1,(

a b
c d

)
(Cx,y) = Cax+by,cx+dy.

3.1. Ford circles. Consider the array of circles

C0,1||C1,1||C1,0
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C(0,1) C(1,1)

0 1

C(1,0)

Given circles C0,1 and C1,0 we formed a new one, C1,1, by componentwise addition. For
tangent circles Ca,b||Cc,d, there is a Möbius transformation taking C0,1 and C1,0 to Ca,b and
Cc,d, respectively, and thus taking C1,1 to Ca+c,b+d. We are thus led to the iterative procedure

Ca,b Cc,d
Ca,b Ca+c,b+d Cc,d

Starting with our initial configuration, successive iterations give us the “Ford circles” (see [5]
and [16]).

A Ford circle is thus a circle of the form Ca,b where a, b > 0 are relatively prime integers.
Clearly, any two Ford circles are either tangent to each other or do not touch at all. Further
each is tangent to the horizontal axis at a positive rational number and, in fact, for every
positive rational number a/b in lowest terms there is a Ford circle Ca,b.

The locations of tangency for these circles are
0
1 ,

1
1

0
1 ,

1
2 ,

1
1

0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1

0
1 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

1
1

and Stern’s sequence makes a new appearance: the locations of tangency of the circles in the
kth iterate are an/a2k+n, n = 0, . . . , 2k.

Recall, with rn := an+1

an
, the function F (x) := max

{
x

1− x
, x− 1

}
is easily seen to satisfy

F (rn) = rbn/2c

and so, by the Tree Theorem, the tree induced by F on the positive rationals coincides with
the tree with values (rn); i.e., (rn) enumerates the positive rationals.

3.2. Another circle packing, diatomic array, and diatomic sequence. In this subsec-
tion, and with subsection 3.1 as a guide, the array of circles

C0,1||C1,
√
2||C√2,1||C1,0

indicates the recursive process
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C(0,1) C(�2,1)

C(1,0)

C(1,�2)

0 1/�2 �2

Ca,b Cc,d
Ca,b Ca

√
2+c,b

√
2+d Ca+c

√
2,b+d

√
2 Cb,d

which leads to a function

F (x) = max

{
x

1− x
,
2x− 2

2− x
, x− 2

}
that, by the Tree Theorem, induces an enumeration of the postive rationals.

Here are the details. Guettler and Mallows proposed a new type of Ford circle in [7]. Their
form of Ford circles is different from ours since, for a given pair of tangent circles, they add
two new tangent circles. To ensure uniqueness, they do that according to the rule that the
tangent points of the four circles with each other all lie on some circle.

One can also construct this analogue of the set of Ford circles (with tangents between 0 and√
2) by, starting with C0,1/

√
2 and C√2,1, recursively appending to every pair of tangent circles

Ca,b, Cc,d, the two other circles Ca+
√
2c,b+

√
2d and C√2a+c,

√
2b+d.

The first and second coordinates of these circles satisfy a recursion defined by

a b a

a a
√

2 + b a+ b
√

2 b b
√

2 + a b+ a
√

2 a

and we get another diatomic array:

1 1

1
√

2 1

1 2
√

2 3
√

2 3 2
√

2 1

1 3
√

2 5 2
√

2 7 5
√

2 3 4
√

2 5
√

2 5 4
√

2 3 5
√

2 7 2
√

2 5 3
√

2 1
. . . . . . . . . . . . . . . . . . .

and another diatomic sequence (formed, again, by deleting the right-most column of 1s):

bn : 0, 1,
√

2, 1, 2
√

2, 3,
√

2, 3, 2
√

2, 1, 3
√

2, 5, 2
√

2, 7, 5
√

2, 3, . . .

Its recursive definition is 
b3n := bn,

b3n+1 :=
√

2 · bn + bn+1,

b3n+2 := bn +
√

2 · bn+1.

(12)
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As with Stern’s sequence, this sequence satisfies a 3-term recurrence (Th. 18 of [15]), namely

bn+1 =
√

2bn + bn−1 − 2(bn−1 mod
√

2bn). (13)

Hence, for sn :=
√

2bn+1/bn,

sn+1 = 2 +
2

sn
− 4

{
1

sn

}
. (14)

Theorem 3.1. Every positive rational is of the form sn for some n.

Proof. Let S := Q+, S0 := {1, 2}, and define F : S → S by, for all x ∈ S − S0,

F (x) = max

{
x

1− x
,
2x− 2

2− x
, x− 2

}
.

With, as before, Φ(a/b) := a+b when a/b is in lowest terms, it is easy to verify that Φ(F (x)) <
Φ(x) for all x ∈ S − S0. By the Tree Theorem, the positive rationals can be arranged in two
rooted trees (here we identify (a, b) with b

a):

(1,2)

(1,4) (2,3) (3,2)

(1,1)

(1,3) (3,4) (2,1)

By the definition of (sn), we can verify
s3n = sn + 2,

s3n+1 = 2sn+2
sn+2 ,

s3n+2 = sn
1+sn

,

(15)

and so, for all n ≥ 1,

F (sn) = sbn/3c.

Hence every sn appears exactly once on the pair of trees and thus n 7→ sn is an enumeration
of the positive rationals. �

Corollary 3.2. The iterates of 2 + 2
x − 4

{
1
x

}
, starting at 2, span the entire set of positive

rational numbers.

Note. This result appeared [17] and [10] as a problem and solution in the American Mathe-
matical Monthly. The sequence (bn) first appeared in [15] where most of the material in this
section also appeared as well.

3.3. Another example. Here we have another array of circles:

C0,1||C1,
√
3||C√3,2||C2,

√
3||C√3,1||C1,0

C(0,1) C(�3,1)

C(1,�3)
C(�3,2)

C(2,�3)

0 1/�3 �3/2 2/�3 �3

C(1,0)
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giving rise to the recursive process

Ca,b Cc,d
Ca,b Ca+c

√
3,b+d

√
3 Ca

√
3+2c,b

√
3+2d C2a+c

√
3,2b+d

√
3 Ca

√
3+c,b

√
3+d Cb,d

which leads to

F (x) = max

{
x

1− x
,
3x− 3

3− 2x
,
2x− 3

2− x
,
3x− 6

3− x
, x− 3

}
,

and thus to another enumeration of the rationals.
Here are some details; our analogue of Stern’s sequence here is

c5n = cn,

c5n+1 =
√

3 · cn + cn+1,

c5n+2 = 2cn +
√

3cn+1,

c5n+3 =
√

3cn + 2cn+1,

c5n+4 = cn +
√

3cn+1.

(16)

Let

tn :=

√
3cn+1

cn
.

Theorem 3.3. Every positive rational is of the form tn for some n.

Proof. As above, we can use the Tree Theorem with

F (x) = max

{
x

1− x
,
3x− 3

3− 2x
,
2x− 3

2− x
,
3x− 6

3− x
, x− 3

}
,

fixed points S0 = {1, 32 , 2, 3}, and Φ as before. �

As above, we can find a recursive formula: t0 =∞ and

tn+1 = 3

(
2

⌊
1

tn

⌋
+ 1− 1

tn

)
and we have the semi-recursive formula

tn = 3

(
2ν5(n) + 1− 1

tn−1

)
.

3.4. A limit to generality. The circular arrays are all examples of “necklaces”: the points
of tangency are all on a circle. In particular, the iterates of the Möbius transformation(

0 1
−1 α

)
(x) :=

1

α− x

are periodic for α = 1,
√

2, φ (the golden ratio
√
5+1
2 ), and

√
3 (we have necklaces of length

3,4,5, and 6 respectively).
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For a real α, we can start a chain:

C(0, 1)||C(1, α)||C(α, α2 − 1)||C(α2 − 1, α3 − 2α)|| . . .

This is a sequence C(pn−1(α), pn(α)) where (pn) is a sequence of polynomials that satisfy a
recurrence similar to those of Chebyshev polynomials and, in fact, pn(x) = Un(x/2) where Un
are Chebyshev polynomials of the second kind. Furthermore, if α is the largest root of pN for
some N , then, and only then, the chain terminates with C(1, 0). Such necklaces give rise to
an enumeration of the positive rationals via the recursion

xn+1 = α2

(
2

⌊
1

xn

⌋
+ 1− 1

xn

)
only when α2 is rational and thus UN must have largest irreducible factor of degree at most 2. It
is known [11] that Un has largest irreducible factor of degree φ(2n+2)/2 where φ(n) is the Euler
totient function. Starting with n = 1, the sequence φ(2n+ 2)/2 goes 1, 1, 2, 2, 2, 3, 4, 3, 4, 5, . . .;
the only quadratic or linear cases correspond to n = 1, 2, 3, 4, 5. The cases for n = 2, 3, 5 are
spoken for above, leaving n = 4 as the last quadratic case.

The three enumerations of rationals we have found are the same as those Ponton [18] found,
independently, by using analogues of Calkin-Wilf trees. Ponton further concludes, as did we,
that these are the only three possibilities.

3.5. The k = 4 case. Based on the array

C(0,1)

C(1,0)

C(φ,1)

C(1,φ) C(φ,φ)

0 1/φ 1 φ

we have the necklace

C0,1||C1,φ||Cφ,φ||Cφ,1||C1,0

which indicates the recursive process

Ca,b Cc,d
Ca,b Caφ+c,bφ+d Caφ+cφ,bφ+dφ Ca+cφ,b+dφ Cc,d

and the analogue of Stern’s sequence d0 = 0, d1 = 1 and, for n ≥ 0,
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
d4n = dn,

d4n+1 = φdn + dn+1,

d4n+2 = φdn + φdn+1,

d4n+3 = dn + φdn+1.

(17)

The sequence (dn) begins
1, φ, φ, 1, 2φ, 1+2φ, 2+φ, φ, 1+2φ, 2+2φ, 1+2φ, φ, 2+φ, 1+2φ, 2φ, 1, 3φ, 2+3φ, 3+2φ, 2φ, 3+

4φ, 4+5φ, 2+5φ, 1+2φ, 4+4φ, 3+6φ, 2+5φ, 2+φ, 1+4φ, 2+4φ, 3+2φ, φ, 2+3φ, 3+4φ, 2+4φ, 1+
2φ, 4+5φ, 4+7φ, 3+6φ, 2+2φ, 3+6φ, 4+7φ, 4+5φ, 1+2φ, 2+4φ, 3+4φ, 2+3φ, φ, 3+2φ, 2+
4φ, 1+4φ, 2+φ, 2+5φ, 3+6φ, 4+4φ, 1+2φ, 2+5φ, 4+5φ, 3+4φ, 2φ, 3+2φ, 2+3φ, 3φ, 1, 4φ, 3+
4φ, 4+3φ, 3φ, 5+6φ, 6+8φ, 3+8φ, 2+3φ, 6+7φ, 5+10φ, 4+8φ, 3+2φ, 2+7φ, 4+7φ, 5+4φ, 2φ, 5+
6φ, 6+9φ, 4+9φ, 3+4φ, 8+12φ, 9+16φ, 8+13φ, 4+5φ, 7+14φ, 10+16φ, 9+12φ, 2+5φ, 6+9φ,

and, letting un :=
φdn+1

dn
, we have a sequence of elements in Q+(φ) that begins:

1 +φ, φ, 1, 2 + 2φ, 1/2 +φ, 3−φ, 2/5 +φ/5, 1 + 2φ, 2, 1/2 +φ/2,−1 +φ, 2 +φ, 3/5 + 4/5φ,−2 +
2φ, 1/2, 3 + 3φ, 2/3 + φ,−5 + 4φ, 6/11 + 2/11φ, 3/2 + 2φ,−1/5 + 7/5φ, 10/11 + 3/11φ, 1/11 +
4/11φ, 4, 3/4 + 3/4φ,−1/3 +φ, 8/11−φ/11, 7/5 + 6/5φ, 4/11 + 10/11, 2−φ/2, 3/11 +φ/11, 2 +
3φ,−1 + 2φ, 4/5 + 2/5φ, φ/2, 3 + φ, 8/11 + 9/11,−3/5 + 6/5φ, 2/3, 3/2 + 3/2φ, 1/3 + φ, 8/5−
φ/5, 3/11+2/11φ, 2φ, 1+φ/2, 1/5+3/5φ, 2−φ, 3+2φ, 8/11+10/11,−1+3/2φ, 7/11+φ/11, . . .

By the definition of (dn) and (un),



u4n = φ2 + un,

u4n+1 =
φ3 + φ2un
φ2 + un

,

u4n+2 =
φ+ φun
φ+ un

,

u4n+3 =
un

1 + un
,

(18)

and so

F (x) := max

{
x

1− x
,
φx− φ
φ− x

,
φ2x− φ3

φ2 − x
, x− φ2

}
satisfies F (un) = ubn/4c for all n.

Since Z[φ] is a UFD, we may define, as above, Φ(a/b) = a+ b where a/b is in lowest terms
over Z[φ]. It is then easy to check that

Φ(F (x)) < Φ(x) (19)

for all x ∈ Q+(φ). It is not clear, however, if every element of Q+(φ) appears on this list since
the range of Φ is not well-ordered – the problem being that φ and all its integer powers are
units in Z[φ]. We thus can only conjecture that the sequence (un) is an enumeration of Q(φ)+.

Note added in proof. Curtis McMullen [13] pointed out that he reproved, in the appendix
of his “Teichmüller geodesics of infinite complexity” (2002), a result of Leutbecher [12] that
states that every point of the field Q(φ) rests on one of the circles in the circle packing of
subsection 3.5 (thus affirming the conjecture).
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As above, we can find a recursive formula:

u0 =∞ and un+1 = φ2
(

2

⌊
1

un

⌋
+ 1− 1

un

)
.

and we also have a semi-recursive formula

un = φ2
(

2ν4(n) + 1− 1

un−1

)
.

4. Similarities and Differences

In this section, we summarize some of the similarities and differences between our various
sequences.

4.1. Trees. The four sequences we have studied each could be arranged on the vertices of
trees defined, via the Tree Theorem, by a certain function. Here our functions are:

• rn : f(x) = max
{

x
1−x , x− 1

}
,

• sn : f(x) = max
{

x
1−x ,

2x−2
2−x , x− 2

}
,

• tn : f(x) = max
{

x
1−x ,

3x−3
3−2x ,

2x−3
2−x ,

3x−6
3−x , x− 3

}
,

• un : f(x) = max

{
x

1− x
,
φx− φ
φ− x

,
φ2x− φ3

φ2 − x
, x− φ2

}
.

A method of finding them is as follows. Given α ∈ {1,
√

2, φ,
√

3}, let M be the Möbius

transformation defined by

(
1 α
0 −1

)
, and let an = α ·Mn(0) where 0 = a0 < a1 < . . . < aN =

∞. The corresponding F is given by

F (x) = max

{
aj ·

x− aj−1
aj − x

: j = 1 . . . N

}
.

4.2. Analogues of Stern’s sequence. For α = 1,
√

2,
√

3, φ, our sequences all have similar
3-term recurrences:

• an+1 = an + an−1 − 2(an−1 mod an),
• bn+1 =

√
2bn + bn−1 − 2(bn−1 mod (

√
2bn)),

• cn+1 =
√

3cn + cn−1 − 2(cn−1 mod (
√

3cn)),
• dn+1 = φdn + dn−1 − 2(dn−1 mod (φdn)).

From these, our sequences of rationals are as follows (the last, of course, in Q(φ)):

• rn =
an+1

an
,

• sn =

√
2bn+1

bn
,

• tn :=

√
3cn+1

cn
,

• un :=
φdn+1

dn
.
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4.3. Semi-recursive formulas. The sequences in the text all have semi-recursive formulas
involving valuation functions νN (n).

Starting with ∞,

• rn = 1

(
2ν2(n) + 1− 1

rn−1

)
,

• sn = 2

(
2ν3(n) + 1− 1

sn−1

)
,

• tn = 3

(
2ν5(n) + 1− 1

tn−1

)
,

• un = φ2
(

2ν4(n) + 1− 1

un−1

)
.

In fact, they are all of the form

xn = 4 cos2
(

π

N + 1

)
·
(

2νN (n) + 1− 1

xn−1

)
where N = 2, 3, 5 and 4 respectively. The corresponding sequences for N > 5 surely share
many of the properties of the sequences we have studied.

4.4. Recurrence formulas. Let

f(x) := 1 +
1

x
− 2

{
1

x

}
= 2

⌊
1

x

⌋
+ 1− 1

x
.

The 3-term recurrences above give:

• rn+1 = f(rn),
• sn+1 = 2f(sn),
• tn+1 = 3f(tn),
• un+1 = φ2f(un).

That is, all are of the form

xn+1 = α2f(xn)

for α = 1,
√

2,
√

3, φ respectively.

4.5. Greedy algorithms. The sequences above all can be obtained by greedy algorithms:

• rn : [l1, . . . , lk] 7→ [l1, . . . , lk, n− 1/lk],
• sn : [l1, . . . , lk] 7→ [l1, . . . , lk, 2(n− 1/lk)],
• tn : [l1, . . . , lk] 7→ [l1, . . . , lk, 3(n− 1/lk)],
• un : [l1, . . . , lk] 7→ [l1, . . . , lk, φ

2(n− 1/lk)],

where, in each case, n is the least positive integer making the elements in the list distinct.

4.6. Degrees. The degree of a sequence (xn) is a real number α such that for all ε > 0,

lim sup
n→∞

xn
nα+ε

= 0 and lim sup
n→∞

xn
nα−ε

=∞.

The term comes from the fact that, for a polynomial p of degree N , the sequence (p(n)) has
degree N . For a general sequence, this number need not exist. However, if it does exist, then
it is unique.

• (an) has degree log2(φ) = 0.694241914 . . .. This result follows from a stronger result
by Coons and Tyler [3]. It is also fairly easy to prove from basic properties of Stern’s
sequence [14].
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• (bn) has degree log3(1 +
√

2) = 0.802260812 . . .. This result follows from a stronger
result by Coons [4]. It is also fairly easy to prove from basic properties of (bn) that
can be found in [15].

• (cn) has degree log5

(
3+
√
13

2

)
= 0.742348124 . . . This has been proved by the author

using methods similar to those used in the previous cases (unpublished).
• In general, the sequence (xn) as defined in subsection 4.3 seems to have degree

logN

(
α2 +

√
4 + α4

2

)

where α = 2 cos
(

π
N+1

)
. For example, (dn) has degree 0.7818951685 . . ..

4.7. Generating functions. The generating functions for these sequences each have product
formulas easily deduced from the following expressions. By observation, the polynomials
involved have each of their zeros equal to some root of unity (we call them “primary roots”).

• A(x) =
∑
an+1x

n =
(
1 + x+ x2

)
A(x2),

primary roots eiπn/6, n = 4, 8.

• B(x) =
∑
bn+1x

n =
(
1 +
√

2x+ x2
√

2x3 + x4
)
B(x3),

primary roots eiπn/12, n = 5, 11, 13, 19.

• C(x) =
∑
cn+1x

n =
(
1 +
√

3x+ 2x2 +
√

3x3 + x4 +
√

3x5 + 2x6 +
√

3x7 + x8
)
C(x5),

primary roots eiπn/30, n = 7, 17, 19, 29, 31, 41, 43, 53.
• D(x) =

∑
dn+1x

n =
(
1 + φx+ φx2 + x3 + φx4 + φx5 + x6

)
D(x4)

primary roots eiπn/20, n = 6, 14, 16, 24, 26, 34.

We see that the sets of primary roots are, for n = 2, 3, 5, 4 respectively,{
eiπr : r = 2j

n ±
1

n+1 , j = 1, . . . , n− 1
}
.

4.8. Closed formulas. Letting 〈x1, x2, . . . , xn〉k be 1 or 0 according as the k-ary expansions
of x1, . . . , xn share no non-zero digits, recall by equation (10)

an+1 =
∑

a+2b=n

〈a, b〉2.

This is equivalent to the fact that diagonal sums across Pascal’s triangle mod 2 give an+1

(where the unmodded sums give Fn+1).

By [15], Th. 10

bn+1 =
∑

a+2b+3c+4d=n

〈a, b, c, d〉3
√

2
a+c

and it is not hard to see that

cn+1 =
∑

a+2b+3c+4d+5e+6f+7g+8h=n

〈a, b, c, d, e, f, g, h〉5
√

3
a+c+e+g

2b+f .

Recall Binet’s formula:

Fn+1 =

n∑
k=0

φs(k)φ
s(n−k)

where φ, φ are zeros of x2 − x− 1 and s(n) = n.
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The sequences (an) and (bn) have Binet type formulas: by equation (11),

an+1 =

n∑
k=0

σs(k)σs(n−k)

where σ, σ are zeros of x2 +x+ 1 and s(n) is the number of ones in the binary expansion of n.

By [15], Th. 12

bn+1 =
n∑
k=0

τ s(k)τ s(n−k)

where τ, τ are zeros of x2 −
√

2x− 1 and s(n) is the number of ones in the ternary expansion
of n.

The proofs are from the formulas for the generating functions; it is not clear if (cn) and (dn)
have similar formulas.

4.9. Singular functions. As noted in [14], f
(
n
2k

)
:=

an
a2k+n

is Conway’s box function with

f−1(x) =?(x), Minkowski’s question mark function defined by

f−1([0, c1, c2, . . .]) =
∑ (−1)k+1

2c1+...+ck−1
.

As noted in [15], g
(
n
3k

)
:=

bn
b3k+n

has a singular inverse function g−1(x) satisfying

g−1([0, c1
√

2, c2
√

2, . . .]) =
∑ (−1)k+1

3c1+...+ck−1
.

Based on these results, it seems likely that h
(
n
5k

)
:=

cn
c5k+n

has a singular inverse function

h−1(x) satisfying

h−1([0, c1
√

3, c2
√

3, . . .]) =
∑ (−1)k+1

5c1+...+ck−1

and that l
(
n
4k

)
:=

dn
d4k+n

has a singular inverse function l−1(x) satisfying

l−1([0, d1φ, d2φ, . . .]) =
∑ (−1)k+1

4d1+...+dk−1
.

4.10. Minus continued Fractions. “Minus continued fractions” are of the form

(a0, a1, a2, . . .) := a0 −
1

a1 −
1

a2 −
1

a3 − . . .
where ai ∈ Z.

Every positive rational is a minus continued fraction of the form

un −
1

un−1 −
1

un−2 −
1

un−3 − . . .

= (un, un−1, un−2, un−3, . . . , u1)

DECEMBER 2019 127



THE FIBONACCI QUARTERLY

where un = 2ν2(n) + 1.
Every positive rational is a minus continued fraction of the form

2un −
2

2un−1 −
2

2un−2 −
2

2un−3 − . . .

= (2un, un−1, 2un−2, un−3, . . . , cu1)

where un = 2ν3(n) + 1 and c is 1 or 2, depending on the parity of n.
Every positive rational is a minus continued fraction of the form

3un −
3

3un−1 −
3

3un−2 −
3

3un−3 − . . .

= (3un, un−1, 3un−2, un−3, . . . , cu1)

where un = 2ν5(n) + 1 and c is 1 or 3, depending on the parity of n.
As with equation (8), we can also express our rational sequences in terms of minus continued

fractions defined by lists. Let `0 be the empty list [ ] and, for a given k ∈ {2, 3, 4, 5, . . .}, let

`kn := 1 + `n,

`kn+1 := 1 ∗ `kn,
`kn+2 := 1 ∗ `kn+1,

. . . . . . . . . . . . . . . . . . . . .

`kn+k−1 = 1 ∗ `kn+k−2.

(20)

For our given k and its corresponding lists `n = [`n,0, `n,1, `n,2, . . .], let α = 2 · cos
(

π
k+1

)
and define a sequence (xn) in terms of minus continued fractions

xn := α · (α`n,0, α`n,1, α`n,2, . . .).
These sequences agree with (an), (bn), (cn), (dn) when k = 2, 3, 5, 4 respectively.
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[9] E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math.,
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