
GLOBAL SERIES FOR ZETA FUNCTIONS
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Abstract. We provide two general families of everywhere-convergent series expansions for
Barnes multiple zeta functions involving Bernoulli polynomials of the second kind and weigh-
ted Stirling numbers. These contain the classical results of Ser and Hasse and several recent
generalizations as special cases. We also show how these series have good p-adic analogues.

1. Introduction

The values of the Riemann zeta function ζ(s) at positive integers k may be interpreted as the
(reciprocals of) probabilities that a set of k “randomly chosen” positive integers is relatively
prime; this is a consequence of the celebrated Euler product

ζ(s) :=

∞∑
n=1

n−s =
∏

primes p

(1− p−s)−1 (<(s) > 1) (1.1)

observed for real values of s by Euler as an expression of the Fundamental Theorem of Arith-
metic. Upon analytic continuation, the values of ζ(s) at the negative integers are rational
numbers whose numerators are related to the class numbers of cyclotomic fields. And of
course the behavior of ζ(s) in the critical strip 0 < <(s) < 1 is intimately connected to
questions concerning the distribution of prime numbers.

Since zeta functions reveal different arithmetic information depending on where they are
evaluated, there is some philosophical interest in expressions for them which are valid on the
entire complex plane. Series expansions of this type were given by Ser [17] and by Hasse [9]
for the Hurwitz zeta function, and several generalizations of these results are also known. In
this article we give two very general families (Theorems 3.1 and 3.2) of series expansions for
multiple zeta functions which unify many of the known series, such as those in [3, 17, 9]. As
applications we obtain series for zeta values, Stieltjes constants, and related constants in terms
of Bernoulli numbers of the second kind, hyperharmonic numbers, and related sequences.

Beyond providing a comprehensive general framework for complex series of this type, a
further peculiar feature of these series is that they are equally valid as p-adic series for p-adic
multiple zeta functions, under suitable conditions (Theorems 6.1 and 6.2). In the last two
sections we give several examples of series derived from these general theorems which converge
in both real and p-adic senses to analogous zeta values.

2. Zeta functions and Bernoulli polynomials

For a positive integer r, the Barnes multiple zeta function [1, 15] of order r, denoted by
ζr(s, a), is defined by

ζr(s, a) :=
∞∑
t1=0

· · ·
∞∑
tr=0

(a+ t1 + · · ·+ tr)
−s (2.1)

for <(s) > r and <(a) > 0, and continued meromorphically to s ∈ C with simple poles at
s = 1, 2, . . . , r. When r = 1 or a = 1 that part of the notation is often suppressed, so that

154 VOLUME 57, NUMBER 5



GLOBAL SERIES FOR ZETA FUNCTIONS

ζ1(s, 1) = ζ(s) denotes the Riemann zeta function. Note also that ζ0(s, a) = a−s by convention.
For <(s) > r and <(a) > 0 these functions may also equivalently be given [21, eq. (3.3)] by
the single Dirichlet series

ζr(s, a) =
∞∑
m=0

(
m+ r − 1

m

)
(m+ a)−s. (2.2)

For our purposes here it is useful to use (2.2) to extend the definition to include zeta
functions of negative integer order as well. For any nonnegative integer r, the definition (2.2)
gives

ζ−r(s, a) =
r∑
j=0

(
r

j

)
(−1)j(a+ j)−s, (2.3)

so that (−1)rζ−r(s, a) is the r-th forward difference of the power function a−s with respect to
the a parameter. With these definitions we have the difference equation

ζr(s, a)− ζr(s, a+ 1) = ζr−1(s, a) (2.4)

for all integers r, and the derivative-shift identity

∂

∂a
ζr(s, a) = −sζr(s+ 1, a) (2.5)

[15, eq. (3.11)] for all integers r.

The n-th Bernoulli polynomial of order z, denoted B
(z)
n (x), is defined [4] by(

t

et − 1

)z
ext =

∞∑
n=0

B(z)
n (x)

tn

n!
. (2.6)

These are polynomials of degree n in x and of degree n in the order z. They satisfy a difference
equation

B(z)
n (x+ 1)−B(z)

n (x) = nB
(z−1)
n−1 (x) (2.7)

[4, eq. (1.5)] and derivative identity

∂

∂x
B(z)
n (x) = nB

(z)
n−1(x) (2.8)

[4, eq. (1.6)]. Their dual companions are the order z Bernoulli polynomials of the second kind

b
(z)
n (x), which are defined [4] by the generating function(

t

log(1 + t)

)z
(1 + t)x =

∞∑
n=0

b(z)n (x)tn. (2.9)

These are also polynomials of degree n in x and of degree n in the order z. When z = 1 or

x = 0 that part of the notation is often suppressed, so that B
(z)
n denotes B

(z)
n (0), bn(x) denotes

b
(1)
n (x), and Bn denotes B

(1)
n (0). The numbers bn are also often called Gregory coefficients

and n!bn are sometimes called Cauchy numbers. The polynomials b
(z)
n (x) satisfy a difference

equation

b(z)n (x+ 1)− b(z)n (x) = b
(z)
n−1(x) (2.10)

[4, eq. (2.4)] and derivative identity

∂

∂x
b(z)n (x) = b

(z−1)
n−1 (x) (2.11)

DECEMBER 2019 155



THE FIBONACCI QUARTERLY

[4, eq. (2.3)]. The polynomials B
(z)
n (x) and b

(z)
n (x) may be used interchangeably by means of

Carlitz’s identities

n!b(z)n (x) = B(n−z+1)
n (x+ 1), B(z)

n (x) = n!b(n−z+1)
n (x− 1) (2.12)

[4, eq. (2.11), (2.12)].
It is well known that for positive integers r, the values of Barnes zeta functions at the

negative integers

ζr(−k, a) =
(−1)rk!

(r + k)!
B

(r)
r+k(a) (2.13)

[15, eq.(3.10)] are given in terms of Bernoulli polynomials, as are the residues

Res
s= k

ζr(s, a) =
(−1)r−kB

(r)
r−k(a)

(k − 1)!(r − k)!
(2.14)

[15, eq. (3.9)] of ζr(s, a) at each of its r poles at s = 1, . . . , r.

3. Series for zeta functions

Our first family of series, involving the Bernoulli polynomials of the second kind, give a
broad generalization of the original series representation of Ser [17]. These express finite
combinations of positive order zeta functions ζr(s, a) as series of negative order zeta functions

ζ−m(s, a) :=
∑m

j=0(−1)j
(
m
j

)
(j + a)−s weighted by Bernoulli polynomials b

(k)
m (x) of the second

kind.

Theorem 3.1. For all nonnegative integers N and k, there is an identity of analytic functions
∞∑
m=0

(−1)m+Nb
(k)
m+N (x)

m∑
j=0

(−1)j
(
m

j

)
(j + a)−s

=
ζN−k(s− k, a+ x)

(s− 1)k
−
N−1∑
m=0

(−1)mb(k)m (x)ζN−m(s, a)

for all s ∈ C, provided that a > 0 and a+ x > 0.

Remarks. The special case where N = 1, k = 1, a = 1, x = 0 reduces to the original result
∞∑
m=0

(−1)mbm+1

m∑
j=0

(−1)j
(
m

j

)
(j + 1)−s = ζ(s)− 1

s− 1
(3.1)

of Ser [17]. The cases where N = 1, k = 1 were recently given by Blagouchine [3, Theorem
3, eq. (28)]. The positive-order zeta functions on the right side of the above identity have
simple poles at s = 1, 2, . . . , N , however the residues all sum to zero, as the series on the left
represents an analytic function of s ∈ C. The highest order zeta which occurs on the right
side is ζN (s, a), except when k = 0 in which case there is also the term ζN (s, a+ x). In these
series, the index shift N of the Bernoulli polynomial series coefficients on the left determines
the order of the zeta functions on the right, and the order k of the Bernoulli polynomial series
coefficients on the left determines a shift, in order and in the s variable, of one zeta function
term on the right.

Examples. Taking N = 1 in this theorem gives
∞∑
m=0

(−1)mb
(k)
m+1(x)ζ−m(s, a) = ζ(s, a)− ζ1−k(s− k, a+ x)

(s− 1)k
, (3.2)
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where the two terms on the right side both have simple poles at s = 1 with residues summing
to 1− 1 = 0, for any k. Taking N = 2 yields

∞∑
m=0

(−1)mb
(k)
m+2(x)ζ−m(s, a) =

ζ2−k(s− k, a+ x)

(s− 1)k
− ζ2(s, a) +

(
x+

k

2

)
ζ(s, a), (3.3)

whose k = 1 case was given by Blagouchine [3, eq. (77)]. At s = 1, the residues of the three
zeta function terms on the right side of (3.3) sum to(

−a− x+
2− k

2

)
+ (a− 1) +

(
x+

k

2

)
= 0 (3.4)

and at s = 2 the residues sum to 1− 1 + 0 = 0. For N = 3 we have

∞∑
m=0

(−1)mb
(k)
m+3(x)ζ−m(s, a) = ζ3(s, a)− (x+

k

2
)ζ2(s, a)

+b
(k)
2 (x)ζ(s, a)− ζ3−k(s− k, a+ x)

(s− 1)k
, (3.5)

and once again all residues on the right at s = 1, 2, 3 sum to zero.

Proof of Theorem 3.1. We first prove the theorem in the case k = 0. We begin by fixing a
nonnegative integer N , a complex number s with <(s) > N + 1, and a positive real number a.
We construct the Newton series for the analytic function f(x) = ζN (s, a + x) of the complex
variable x in the right half plane described by <(a + x) > 0. Under these conditions the
Newton series is

ζN (s, a+ x) =

∞∑
m=0

(
x

m

)
∆m [ζN (s, a+ x)]x=0

=
N−1∑
m=0

(−1)m
(
x

m

)
ζN−m(s, a)

+
∞∑

m=N

(
x

m

)
∆m−N (∆N [ζN (s, a+ x)]x=0

)
=

N−1∑
m=0

(−1)m
(
x

m

)
ζN−m(s, a)

+
∞∑
m=0

(−1)m+N

(
x

m+N

)
ζ−m(s, a), (3.6)

where ∆ is the difference operator defined by ∆f(x) = f(x + 1) − f(x). In order to justify
the existence and convergence of this Newton series, we first appeal to the Mellin transform
integral representation

ζN (s, a) =
1

Γ(s)

∫ ∞
0

tse−at

(1− e−t)N
dt

t
(3.7)

[15] which is valid for <(s) > N . Since we assume that s ∈ C is fixed with <(s) > N + 1,
we can verify that the function f(t) = ts−1e−at(1− e−t)−N satisfies limt→0 f(t) = 0 and
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limt→∞ f(t) = 0, and therefore is bounded on (0,∞). It follows that for fixed s, a as described
we have

|ζN (s, a+ x)| 6 C
∫ ∞
0
|e−xt| dt (3.8)

for some positive constant C, which shows that ζN (s, a + x) has exponential order less than
π, as an analytic function of x on the half-plane <(a + x) > 0. Thus the hypotheses of
Carlson’s uniqueness theorem [6] are satisfied for the function ζN (s, a+x), so that it is uniquely
determined by its Newton series (3.6), provided that the series converges.

For s, a ∈ C, a 6∈ Z+, we have the estimate∣∣∣∣∣B(n+s)
n (a)

n!

∣∣∣∣∣ ∼
∣∣∣∣ 1

(log n)snaΓ(1− a)

∣∣∣∣ (3.9)

as n→∞ [20, Lemma 2], and for a > 0 we have

ζ−m(s, a) ∼ (logm)s−1Γ(a)

maΓ(s)
(3.10)

as m→∞ [14, Theorem 1.7]. Since B
(n+1)
n (a) = n!

(
a−1
n

)
, for any s, a, x, the m-th term in the

series (3.6) satisfies ∣∣∣∣( x

m+N

)
ζ−m(s, a)

∣∣∣∣ ∼ ∣∣∣∣ (logm)s−2Γ(a)

ma+x+1Γ(−x)Γ(s)

∣∣∣∣ (3.11)

as m → ∞ when x is not a nonnegative integer. Therefore for any positive real number
a and x ∈ C with <(a + x) > 0, the series (3.6) converges absolutely and uniformly on
compact subsets of s ∈ C to an entire function. Since the positive-order zeta functions have
meromorphic continuations to the entire complex plane, it follows that the identity

ζN (s, a+ x)−
N−1∑
m=0

(−1)m
(
x

m

)
ζN−m(s, a) =

∞∑
m=0

(−1)m+N

(
x

m+N

)
ζ−m(s, a) (3.12)

is an identity of entire functions of s ∈ C. Taking x to be real then proves the theorem in the
case k = 0, since it may be written as

ζN (s, a+ x)−
N−1∑
m=0

(−1)mb(0)m (x)ζN−m(s, a) =
∞∑
m=0

(−1)m+Nb
(0)
m+N (x)ζ−m(s, a). (3.13)

Now we consider x to be a real variable with a+ x > 0. Observing that∫ x+1

x
b(k)n (t) dt = b

(k+1)
n+1 (x+ 1)− b(k+1)

n+1 (x) = b(k+1)
n (x) (3.14)

and∫ x+1

x
ζN (s, a+ t) dt =

ζN (s− 1, a+ x)− ζN (s− 1, a+ x+ 1)

s− 1
=
ζN−1(s− 1, a+ x)

s− 1
, (3.15)

we obtain the general statement of the theorem by k-fold application of the operator
∫ x+1
x dx

to both sides of (3.13). For any positive integer k, estimates (3.9), (3.10) show that the series
thus obtained also converge absolutely and uniformly on compact subsets of s ∈ C, so that
interchanging integration and summation is justified. The theorem is therefore proven. �
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Our second family of series includes original results of Ser [17] and Hasse [9] and shows how
they are interrelated. It involves the weighted Stirling numbers of the first kind [5], which may
be defined by the vertical generating function

(1 + t)−r(log(1 + t))k = k!
∞∑
m=k

s(m, k|r) t
m

m!
(3.16)

or by the horizontal generating function

(x)m := x(x− 1) · · · (x−m+ 1) =
m∑
k=0

s(m, k|r)(x+ r)k. (3.17)

For purposes of derivation we regard s(m, k|r) as a polynomial of degree m− k in the variable
r, although the important combinatorial applications occur when r is a nonnegative integer.

In this case, (−1)m−ks(m, k|r) :=
[
m+r
k+r

]
r

is a positive integer known as an r-Stirling number

[2], which counts the number of permutations of {1, 2, . . . ,m+ r}, having exactly k+ r cycles,
in which the elements 1, 2, . . . , r are restricted to appear in different cycles.

Theorem 3.2. For all positive integers k and nonnegative integers N , there is an identity of
analytic functions

∞∑
m=0

(−1)m+N s(m+N, k|r)
(m+N)!

m∑
j=0

(−1)j
(
m

j

)
(j + a)−s

= (−1)k
(
s+ k − 1

k

)
ζN (s+ k, a− r)−

N−1∑
m=k

(−1)m
s(m, k|r)

m!
ζN−m(s, a)

for all s ∈ C, provided that a > 0 and a− r > 0.

Remark. Again, the zeta functions on the right side have simple poles at s = 1, 2, . . . , N , but
the residues sum to zero. As soon as k > N the latter sum on the right vanishes to leave only
a single term involving ζN .

Proof of Theorem 3.2. Observing that(
−x
m

)
=
s(m, 0|x)

m!
, (3.18)

we see from (3.12) with r = −x that the statement of the theorem holds if k = 0. We put
r = −x and apply the differentiation operator d/dr to both sides of (3.12) k times, using (2.5)
and the relation [22, eq. (2.5)]

s′(n, k|r) = −(k + 1)s(n, k + 1|r). (3.19)

Comparing the generating functions (2.9) and (3.16) shows that

s(m+ k, k|r) =
(m+ k)!

k!
b(−k)m (−r) =

(
m+ k

k

)
B(m+k+1)
m (1− r). (3.20)

Therefore it follows from estimates (3.9), (3.10) that the given series converges absolutely and
uniformly on compact subsets of s ∈ C under the given conditions on a and r, justifying the
interchanging of summation and differentiation. This completes the proof. �
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When we take k = 1 in this theorem, the series may be written in terms of hyperharmonic

numbers H
[r]
m which are defined by H

[0]
m = 1

m for m > 0, H
[r]
0 = 0, and

H [r]
m =

m∑
i=1

H
[r−1]
i (3.21)

for positive integers r (cf. [2, 12]). Thus Hn = H
[1]
n denotes the usual harmonic number. The

hyperharmonic numbers are connected to weighted Stirling numbers by means of the identity

H
[r]
m = (−1)m+1s(m, 1|r)/m!.

Corollary 3.3. For all nonnegative integers r and N we have

∞∑
m=0

H
[r]
m+Nζ−m(s, a) = sζN (s+ 1, a− r)−

N−1∑
m=1

H [r]
m ζN−m(s, a)

for all s ∈ C and a > r.

Examples. Taking N = 1 in this corollary gives
∞∑
m=0

H
[r]
m+1

m∑
j=0

(−1)j
(
m

j

)
(j + a)−s = sζ(s+ 1, a− r). (3.22)

The r = 0 case of this formula is the original series of Hasse [9], whereas the r = 1 case was
recently given by Blagouchine [3, eq. (133)]. If we take r = 0, N = 2, and a = 1 in the
corollary we obtain a series for ζ2(s) which reduces to Ser’s original series

∞∑
m=0

1

m+ 2

m∑
j=0

(−1)j
(
m

j

)
(j + 1)−s = (s− 1)ζ(s) (3.23)

[17] by means of the identity ζ2(s) = ζ(s − 1), which follows directly from (2.2). So these
classical series are members of the same hyperharmonic family, which is valid for all positive
integer orders r.

4. Values at negative integers

Since the values of the Barnes zeta function at negative integers are given by Bernoulli
polynomials as in (2.13), evaluating our global series at a negative integer will yield finite sum
identities for Bernoulli polynomials, which may be of combinatorial interest. When evaluated
at negative integers s = −n, the negative-order zeta functions ζ−m(s, a) satisfy

ζ−m(−n, a) = (−1)mm!S(n,m|a) (4.1)

in terms of the weighted Stirling numbers of the second kind [5] which are defined by the
generating function

eat(et − 1)m = m!
∞∑
n=m

S(n,m|a)
tn

n!
. (4.2)

The weighted Stirling number S(n,m|a) is a polynomial of degree n−m in the variable a.

Corollary 4.1. For all nonnegative integers N and k, we have the polynomial identity

n∑
m=0

m!b
(k)
m+N (x)S(n,m|a) = n!

(
B

(N−k)
n+N (a+ x)

(n+N)!
−
N−1∑
m=0

b(k)m (x)
B

(N−m)
N+n−m(a)

(N + n−m)!

)
for all nonnegative integers n.
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Remark. This corollary may be viewed as a decomposition of the Bernoulli polynomial

B
(N−k)
n+N (a+ x) of degree n+N into a sum of n+N + 1 “separable” polynomial terms of the

form f(x)g(a), each of total degree n+N . In the case N = 1 it simplifies to

n∑
m=0

m!b
(k)
m+1(x)S(n,m|a) =

B
(1−k)
n+1 (a+ x)−Bn+1(a)

n+ 1
. (4.3)

Examples. For order k = 0 the above says
n∑

m=0

m!

(
x

m+ 1

)
S(n,m|a) =

Bn+1(a+ x)−Bn+1(a)

n+ 1
, (4.4)

and for k = 1 it says
n∑

m=0

m!bm+1(x)S(n,m|a) =
(a+ x)n+1 −Bn+1(a)

n+ 1
. (4.5)

Corollary 4.2. For all nonnegative integers N , n, and k such that N + n > k, we have the
polynomial identity

n∑
m=0

s(m+N, k|r)S(n,m|a)

(m+ 1)N
=
n!B

(N)
N+n−k(a− r)

k!(N + n− k)!
−
N−1∑
m=k

n!s(m, k|r)B(N−m)
N+n−m(a)

m!(N + n−m)!
.

Examples. Taking k = 1 in this corollary gives the polynomial identity for hyperharmonic
numbers

n∑
m=0

(−1)m+Nm!H
[r]
m+NS(n,m|a) = −

n!B
(N)
N+n−1(a− r)

(N + n− 1)!
+

N−1∑
m=1

(−1)mn!H
[r]
m B

(N−m)
N+n−m(a)

m!(N + n−m)!
(4.6)

for all nonnegative integers n. Taking N = k in this corollary yields
n∑

m=0

s(m+ k, k|r)S(n,m|a)

(m+ 1)k
=
B

(k)
n (a− r)
k!

. (4.7)

5. Values at positive integers

There are two important principles we often make use of when evaluating these series at
positive integers. The first is the identity

ζ−m(n+ 1, a) :=

m∑
j=0

(−1)j
(
m

j

)
(j + a)−n−1 =

m!Pn(h
(1)
m (a), . . . , h

(n)
m (a))

a(a+ 1) · · · (a+m)
(5.1)

[24, eq. (2.28)], where Pn(x1, . . . , xn) denotes the modified Bell polynomial defined by

exp

( ∞∑
n=1

xn
tn

n

)
=

∞∑
n=0

Pn(x1, . . . , xn)tn (5.2)

which is evaluated at generalized harmonic numbers

h(n)m (a) =

m∑
j=0

1

(a+ j)n
. (5.3)

For s = n + 1 ∈ N, this identity may be used to rewrite the inner sum of the infinite series
on the left hand side in terms of generalized harmonic numbers. The second observation is
that the individual positive-order zeta functions ζN (s, a) on the right hand side have poles at
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positive integers s ∈ {1, 2, . . . , N} and are regular if s > N . For example, the case N = 1,
k = 1 case of Theorem 3.1 reads

∞∑
m=0

(−1)mbm+1(x)ζ−m(s, a) = ζ(s, a)− (a+ x)1−s

(s− 1)
, (5.4)

and the evaluation of the right side at s = 1 will be

lim
s→1

(
ζ(s, a)− 1

s− 1

)
−
(

(a+ x)1−s − 1

s− 1

)
= −ψ(a) + log(a+ x), (5.5)

where ψ(a) = ∂
∂a

∂
∂sζ(s, a)

∣∣
s=0

is the digamma function. For s = 2, 3, . . . the evaluation is
obtained by direct substitution, without requiring the use of limits. By means of these two
principles, we present here a general statement for the case N = 1. (For general N one may
also derive similar results.)

Theorem 5.1. For a > 0 and a+ x > 0 we have

∞∑
m=0

(−1)mm!b
(k)
m+1(x)Pn(h

(1)
m (a), . . . , h

(n)
m (a))

a(a+ 1) · · · (a+m)

=



ψ(a+ x)− ψ(a), if k = n = 0,

ζ(n+ 1, a)− ζ(n+ 1, a+ x), if k = 0, n > 0,

(−1)k
(k−1)!

k−1∑
j=0

(−1)j
(
k − 1

j

)
(j + a+ x)k−1 ln(j + a+ x)− ψ(a), if k > 0, n = 0,

ζ(n+ 1, a) + (−1)k−n

n!(k−n−1)!

k−1∑
j=0

(−1)j
(
k − 1

j

)
(j + a+ x)k−n−1 ln(j + a+ x), if 0 < n < k,

ζ(n+ 1, a)− 1
(n)k

k−1∑
j=0

(−1)j
(
k − 1

j

)
(j + a+ x)k−n−1, if 0 < k 6 n.

Examples. We observe some special cases of the above theorem. Taking n = 0 and k = 1,
and observing that P0(x) = 1, for a > 0 and a+ x > 0, we have

∞∑
m=0

(−1)mm!bm+1(x)

a(a+ 1) · · · (a+m)
= log(a+ x)− ψ(a), (5.6)

generalizing the classical Mascheroni series

∞∑
m=0

(−1)mbm+1

m+ 1
= γ (5.7)

[3, eq. (100)] to arbitrary a and x. Taking n = 1, k = 1, a = 1, and observing that P1(x) = x

and h
(1)
m (1) = Hm+1, the harmonic number, for x > −1 we have

∞∑
m=0

(−1)mbm+1(x)Hm+1

m+ 1
= ζ(2)− 1

1 + x
. (5.8)
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Taking x = −1 and a = 2, and observing that bm(−1) = B
(m)
m /m! gives

∞∑
m=0

(−1)mB
(m+1)
m+1

(m+ 1)(m+ 2)!
= γ − 1 (5.9)

and
∞∑
m=0

(−1)mB
(m+1)
m+1 Hm+2

(m+ 1)(m+ 2)!
= ζ(2) + γ − 3. (5.10)

Although we do not give a general statement for all cases with N > 1, we mention a few
isolated identities of this type. In a previous article [21, §5] we derived identities

∞∑
m=0

(−1)mbm+2Hm+1

m+ 1
=
ζ(2)

2
− 1 (5.11)

and
∞∑
m=0

(−1)mb
(2)
m+3Hm+1

m+ 1
=
π2

72
+

log(2π)

2
− γ

2
− 3

4
. (5.12)

These series may also be evaluated by the principles of this section. For the first one, taking
k = 1, N = 2, a = 1, x = 0 in Theorem 3.1 gives

∞∑
m=0

(−1)mbm+2Hm+1

m+ 1
= lim

s→2

(
ζ(s− 1)

s− 1
− ζ2(s)

)
+
ζ(2)

2
. (5.13)

Agreement between (5.11) and (5.13) may be obtained by means of the identity ζ2(s) = ζ(s−1)
which follows from (2.2). For the second one, take k = 2, N = 3, a = 1, x = 0 in Theorem 3.1
to give

−
∞∑
m=0

(−1)mb
(2)
m+3Hm+1

m+ 1
= lim

s→2

(
ζ(s− 2)

(s− 1)(s− 2)
− ζ3(s) + ζ2(s)

)
− ζ(2)

12
. (5.14)

Agreement between (5.12) and (5.14) may be obtained by means of ζ(0) = −1/2, ζ ′(0) =
− log(2π)/2, and the identity ζ3(s) = (ζ(s− 1) + ζ(s− 2))/2 which also follows from (2.2).

The algebraic nature of such constants related to zeta is a topic of considerable interest.
A period [11] is a complex number whose real and imaginary parts are values of absolutely
convergent integrals of rational functions with rational coefficients, in finitely many variables,
over domains in Rn given by polynomial inequalities with rational coefficients. The set of peri-
ods forms a countable ring which contains all algebraic numbers, but also some transcendental
numbers such as powers of π and logarithms of positive algebraic numbers. We make the
following observation concerning the nature of Bernoulli polynomial series at positive integers.

Theorem 5.2. Suppose that a and x are algebraic numbers such that a > 0 and a + x > 0.
Then for any positive integer k the sum of the series

∞∑
m=0

(−1)mm!b
(k)
m+N (x)Pn(h

(1)
m (a), . . . , h

(n)
m (a))

a(a+ 1) · · · (a+m)

is a period when n > N .

Proof. Evaluating the series of Theorem 3.1 at s = n + 1 > N + 1, all of the zeta functions
on the right side are of the form ζr(s, a) where s > r + 1 and a ∈ Q̄. The change of variables
u = 1 − e−t in the integral representation (3.7) shows that any such value is a period, using
the fact that − log(1− u) =

∫ u
0 dx/(1− x) for 0 6 u < 1. �
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Remark. Although it is not even known to be irrational, Euler’s constant γ is believed to not
be a period. Certain other constants, such as e and 1/π, are also believed to not be periods.
When n < N the evaluation of the series in Theorem 5.2 typically involves γ, as in (5.12), and
in such cases is presumably not a period. The summands in the stated series are polynomials
in x and rational functions of a, and the above theorem implies that as long as the Bernoulli
polynomial index shift is not greater than n, the value of the given series is guaranteed to be
a period.

Similar principles hold for the Stirling number series. Although we do not state the most
general result here, we do give a fairly general simple result obtained by assuming k > N .

Theorem 5.3. For k > N , n > 0, a > 0, and a− r > 0, we have

∞∑
m=0

(−1)m+N s(m+N, k|r)Pn(h
(1)
m (a), . . . , h

(n)
m (a))

(m+ 1)Na(a+ 1) · · · (a+m)

= (−1)k
(
n+ k

k

)
ζN (n+ k + 1, a− r).

Examples. Taking n = 0 gives

∞∑
m=0

(−1)m+Ns(m+N, k|r)
(m+ 1)Na(a+ 1) · · · (a+m)

= (−1)kζN (k + 1, a− r), (5.15)

and in the special case where N = k = 1 and a = r + 1 we obtain the hyperharmonic series

∞∑
m=0

m!H
[r]
m+1

(r + 1) · · · (r +m+ 1)
= ζ(2), (5.16)

valid for any nonnegative integer order r. Similarly, taking n = 1 gives

∞∑
m=0

(−1)m+Ns(m+N, k|r)
(m+ 1)Na(a+ 1) · · · (a+m)

m∑
j=0

1

j + a
= (−1)k(k + 1)ζN (k + 2, a− r), (5.17)

and in the special case where N = k = 1 and a = r + 1 we obtain the hyperharmonic series

∞∑
m=0

m!H
[r]
m+1(Hm+r+1 −Hr)

(r + 1) · · · (r +m+ 1)
= 2ζ(3), (5.18)

valid for any nonnegative integer order r.
We also have the following theorem concerning the algebraic nature of these Stirling number

series, analogous to Theorem 5.2.

Theorem 5.4. Suppose that a and r are algebraic numbers such that a > 0 and a − r > 0.
Then the sum of the series

∞∑
m=0

(−1)m
s(m+N, k|r)Pn(h

(1)
m (a), . . . , h

(n)
m (a))

(m+ 1)Na(a+ 1) · · · (a+m)

is a period when n+ k > N .
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6. p-adic versions of the series

One of our primary motivations for considering these series is the fact that they may be also
interpreted p-adically. Although as p-adic series they do not give entire functions of s, under
fairly mild hypotheses on a they give analytic functions of s on p-adic disks which contain the
ring of integers. Roughly speaking, the condition that a > 0 and a+ x > 0 for complex series
is replaced by the condition that a has p-adic absolute value larger than 1 and x is a p-adic
integer.

For a prime number p we use Zp, Qp, and Cp to denote the ring of p-adic integers, the field
of p-adic numbers, and the completion of an algebraic closure of Qp, respectively. Let | · |p
denote the unique absolute value defined on Cp normalized by |p|p = p−1. Given a ∈ C×p , we

define the p-adic valuation νp(a) ∈ Q to be the unique exponent such that |a|p = p−νp(a). By
convention we set νp(0) =∞.

We choose an embedding of the algebraic closure Q̄ into Cp and fix it once and for all.
Let pQ denote the image in C×p of the set of positive real rational powers of p under this

embedding. Let µ denote the group of roots of unity in C×p of order not divisible by p. If
a ∈ Cp, |a|p = 1 then there is a unique element â ∈ µ such that |a − â|p < 1 (called the

Teichmüller representative of a); it may also be defined analytically by â = limn→∞ a
pn!

. We
extend this definition to a ∈ C×p by

â = ̂(a/pνp(a)), (6.1)

that is, we define â = û if a = pru with pr ∈ pQ and |u|p = 1. We then define the function 〈·〉 on

C×p by 〈a〉 = p−νp(a)a/â. This yields an internal direct product decomposition of multiplicative
groups

C×p ' pQ × µ×D (6.2)

where D = {a ∈ Cp : |a− 1|p < 1}, given by

a = pνp(a) · â · 〈a〉 7→ (pνp(a), â, 〈a〉). (6.3)

Since the projection 〈a〉 ∈ D is p-adically close to 1 for any a ∈ C×p , we may define useful

p-adic power functions 〈a〉s. First, for any a ∈ C×p , the power function may be defined using
the binomial expansion

〈a〉s :=

∞∑
n=0

(
s

n

)
(〈a〉 − 1)n (6.4)

which converges to (at least) a C∞ function of s ∈ Zp [16]. Beyond this, if we assume that a
lies in some finite extension K of Qp whose ramification index over Qp is less than p− 1, then
the composition of power series

〈a〉s := exp(s log 〈a〉) (6.5)

converges to an analytic function of s on a disk in Cp which contains Zp, and the definitions
(6.4) and (6.5) agree on this disk [18, Proposition 2.1].

In [18] we defined p-adic multiple zeta functions ζp,r(s, a) for r ∈ Z+ and a ∈ Cp \Zp by the
r-fold Volkenborn integral

ζp,r(s, a) =
1

(s− 1) · · · (s− r)

∫
Zr
p

(a+ t1 + · · ·+ tr)
r

〈a+ t1 + · · ·+ tr〉s
dt1 · · · dtr. (6.6)

For fixed a, ζp,r(s, a) is a C∞ function of s on Zp \ {1, . . . , r}, and is an analytic function of
s on a disc of positive radius about zero, on which it is independent of the choice made to
define the 〈·〉 function. If a lies in a finite extension K of Qp whose ramification index over Qp
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is less than p − 1 then ζp,r(s, a) is analytic for s ∈ Cp such that |s|p < |π|−1p p−1/(p−1), except
for simple poles at s = 1, . . . , r. If s 6∈ {1, . . . , r}, the function ζp,r(s, a) is locally analytic as a
function of a on Cp \ Zp [18, Theorem 3.1].

At the negative integers the values of the p-adic zeta function ζp,r are given by

ζp,r(−n, a) =
(−1)rr!

(n+ r)!

(
〈a〉
a

)n
B

(r)
n+r(a) (6.7)

for |a|p > 1 ([18], Theorem 3.2(v)), in agreement with (2.3) up to a power of the locally
constant, algebraic factor 〈a〉/a.

For a nonnegative integer r we define, as in [23], the p-adic Barnes zeta function ζp,−r(s, a)
of order −r by

ζp,−r(s, a) =
r∑
j=0

(
r

j

)
(−1)j〈a+ j〉−s, (6.8)

for a ∈ Cp \Zp and s ∈ Cp such that the series (6.4) or (6.5) converges, so that (−1)rζp,−r(s, a)

is the r-th forward difference of the power function 〈a〉−s with respect to the a parameter.
With these definitions we have the difference equation

ζp,r(s, a)− ζp,r(s, a+ 1) = ζp,r−1(s, a) (6.9)

for all integers r, and the derivative-shift identity

∂

∂a
ζp,r(s, a) = −s〈a〉

a
ζp,r(s+ 1, a) (6.10)

for all integers r [18, 23].
We now present the p-adic analogues of Theorem 3.1 and Theorem 3.2.

Theorem 6.1. For all nonnegative integers N and k, there is an identity

∞∑
m=0

(−1)m+Nb
(k)
m+N (x)

m∑
j=0

(−1)j
(
m

j

)
〈j + a〉−s

=

(
a

〈a〉

)k ζp,N−k(s− k, a+ x)

(s− 1)k
−
N−1∑
m=0

(−1)mb(k)m (x)ζp,N−m(s, a)

for s, x ∈ Zp, provided that |a|p > 1. These are analytic functions of x ∈ Zp and (at least) C∞

functions of s ∈ Zp which are analytic functions of s on some disk in Cp containing s = 0. If
in addition a lies in a finite extension K of Qp whose ramification index over Qp is less than
p− 1, then these are analytic functions of s on a disk in Cp containing Zp.

Proof. Concerning convergence of the series, we proved in [23, Theorem 3] that |ζ−m(s, a)|p 6
|m!|p|a|−mp for s ∈ Zp and |a|p > 1. Howard [10] proved that νp(bm) > −[[m/(p − 1)]], so it

follows from the generating function (2.9) that νp(b
(k)
m (x)) > −[[m/(p− 1)]] for all k ∈ Z+ and

x ∈ Zp. Therefore the above series converges absolutely and uniformly in s ∈ Zp when |a|p > 1
and s ∈ Zp. Comparison of (4.1) and Corollary 4.1 shows that the stated equality holds when
s = −n is a negative integer. Since both sides are (at least) C∞ functions of s ∈ Zp and they
agree at the negative integers, they agree for all indicated values of s. �
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Theorem 6.2. For all positive integers k and nonnegative integers N , there is an identity

∞∑
m=0

(−1)m+N s(m+N, k|r)
(m+N)!

m∑
j=0

(−1)j
(
m

j

)
〈j + a〉−s

=

(
〈a〉
a

)k
(−1)k

(
s+ k − 1

k

)
ζp,N (s+ k, a− r)−

N−1∑
m=k

(−1)m
s(m, k|r)

m!
ζp,N−m(s, a)

for s, r ∈ Zp, provided that |a|p > 1. These are analytic functions of r ∈ Zp and (at least) C∞

functions of s ∈ Zp which are analytic functions of s on some disk in Cp containing s = 0. If
in addition a lies in a finite extension K of Qp whose ramification index over Qp is less than
p− 1, then these are analytic functions of s on a disk in Cp containing Zp.

It will be observed that these series are identical to those of Theorems 3.1 and 3.2 up to
replacing ζr(s, a) with ζp,r(s, a), and the inclusion of a power of 〈a〉/a in one term on the right.
The same principles which were used to evaluate those series at positive integers s = n + 1
may also be applied to the p-adic series, namely we have

ζp,−m(n+ 1, a) :=
m∑
j=0

(−1)j
(
m

j

)
〈j + a〉−n−1 =

(
a

〈a〉

)n+1 m!Pn(h
(1)
m (a), . . . , h

(n)
m (a))

a(a+ 1) · · · (a+m)
(6.11)

for |a|p > 1 [24, eq. (2.28)], in direct analogy to (5.1).

Examples. Taking N = 1, k = 1, s = 1, n = 0 in Theorem 6.1 and equation (5.6) yields

∞∑
m=0

(−1)mm!bm+1(x)

a(a+ 1) · · · (a+m)
=

log(a+ x)− ψ(a) in R, if a > 0 and a+ x > 0,

logp(a+ x)− ψp(a) in Cp, if |a|p > 1 and x ∈ Zp,
(6.12)

where logp is the p-adic Iwasawa logarithm, defined by its usual power series on D and extended

to all of C×p by logp a := logp 〈a〉, and ψp(a) = ∂
∂a

∂
∂sζp(s, a)|s=0 is the p-adic digamma function.

This gives a generalization to all x ∈ Zp of a result of [23, Theorem 5], so that the exact same
series of polynomials in x and rational functions of a converges, in both real and p-adic metrics,
to analogous transcendental functions, under appropriate conditions.

The remaining examples we present here all involve the prime p = 2, which we choose for
simplicity while remarking that similar identities hold for any prime p. Taking N = 1, k = 1,
s = 2, n = 1, a = 1/2 in Theorem 5.1 and Theorem 6.1 gives

∞∑
m=0

(−1)m4m+1bm+1(x)Om+1

(2m+ 1)
(
2m
m

) =


2

1+2x − 3ζ(2) in R, if x > −1/2,

2
1+2x−4ζ2,1(2,

1
2) in C2, if x ∈ Z2,

(6.13)

where Om :=
∑m

j=1
1

2j−1 is the m-th “odd harmonic” number, generalizing [23, eq. (5.18)].

(Note that ζ2,1(2,
1
2) = 0 by the reflection formula [18, Theorem 3.2(iii)].) Taking N = 1,

k = 1, n = 0, s = 1, x = −1, a = 3/2 gives

∞∑
m=0

(−1)m4m+1B
(m+1)
m+1

(m+ 1)(2m+ 3)(m+ 1)!
(
2m+2
m+1

) =

− log 2− ψ(3/2) in R,

− log2 2− ψ2(3/2) in Q2,
(6.14)
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which is similar to [23, eq. (5.17)]; note also that log2 2 = 0. Taking N = 1, k = 1, n = 0,
s = 1, a = r + 1

2 in Theorem 5.3 and Theorem 6.2 yields the hyperharmonic series

∞∑
m=0

4m+1
(
2r
r

)
H

[r]
m+1

(2r + 2m+ 1)
(
2m+2r
m+r

)(
m+r
r

) =

6ζ(2) = π2 in R,

8ζ2,1(2,
1
2) = 0 in Q2

(6.15)

which is valid both in R and in Q2 for any nonnegative integer order r. Taking N = 1, k = 1,
n = 1, s = 2, a = r + 1

2 yields

∞∑
m=0

4m+1
(
2r
r

)
H

[r]
m+1(Or+m+1 −Or)

(2r + 2m+ 1)
(
2m+2r
m+r

)(
m+r
r

) =

7ζ(3) in R,

16ζ2,1(3,
1
2) in Q2,

(6.16)

again valid in both metrics for any nonnegative integer order r.

7. Stieltjes constants

The Stieltjes constants γn(a) are the coefficients in the Laurent expansion of ζ(s, a) at s = 1,
defined, together with their p-adic counterparts γp,n(a), by

ζ(s, a) =
1

s− 1
+
∞∑
n=0

(−1)n

n!
γn(a)(s− 1)n (a > 0), (7.1)

ζp,1(s, a) =
a/〈a〉
s− 1

+
∞∑
n=0

(−1)n

n!
γp,n(a)(s− 1)n (|a|p > 1). (7.2)

We remark that under the assumption that |a|p > 1, the p-adic zeta function ζp,1(s, a) is
always meromorphic on some disk in Cp containing s = 1, with a simple pole at s = 1 with
residue a/〈a〉, so the above series expansion is valid on some disk in Cp containing s = 1. The

following theorem is obtained by applying ∂n

∂sn

∣∣
s=0

to the series of Theorems 3.1, 3.2, 6.1, and
6.2 for ζ(s, a) and ζp,1(s, a).

Theorem 7.1. For the n-th Stieltjes constant, we have the Bernoulli polynomial formula

γn(a) =

∞∑
m=0

(−1)mbm+1(x)

m∑
j=0

(−1)j
(
m

j

)
log(j + a)n

j + a
− log(a+ x)n+1

n+ 1
,

γp,n(a) =

∞∑
m=0

(−1)mbm+1(x)

m∑
j=0

(−1)j
(
m

j

)
logp(j + a)n

j + a
−

logp(a+ x)n+1

n+ 1
,

and the weighted Stirling number formula

γn(a− r) =
−1

n+ 1

∞∑
m=0

H
[r]
m+1

m∑
j=0

(−1)j
(
m

j

)
log(j + a)n+1,

γp,n(a− r) =
−1

n+ 1

∞∑
m=0

H
[r]
m+1

m∑
j=0

(−1)j
(
m

j

)
logp(j + a)n+1.

As real series, these are valid when a > 0, a + x > 0, a − r > 0. As p-adic series, they are
valid when |a|p > 1 and x, r ∈ Zp.
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We remark that the above (real) Bernoulli formula for γn(a) was recently given by Blagou-
chine [3, eq. (89)], who also gave the r = 0 and r = 1 cases of the real hyperharmonic formula
[3, eq. (123), eq. (138)]. We emphasize that all these formulas are of the same general family,
and they have perfectly natural p-adic analogues.
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