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Abstract. We consider the tiling of an n-board (an n × 1 rectangular board) with third-
squares ( 1

3
× 1 tiles with the shorter sides always aligned horizontally) and ( 1

3
, 2
3
)-fence tiles.

A (w, g)-fence tile is composed of two w× 1 subtiles separated by a g× 1 gap. We show that
the number of ways to tile an n-board using these types of tiles equals F 3

n+1 where Fn is the
nth Fibonacci number. We use these tilings to devise straightforward combinatorial proofs
of identities relating the Fibonacci numbers cubed to one another, to other combinations of
Fibonacci numbers, and to the Pell numbers. Some of these identities appear to be new. We
also show that for p = 2, 3, . . ., the number of ways to tile an n-board using either 1/p × 1
tiles and (1/p, 1− 1/p)-fences or (1/2p, 1/2− 1/2p)- and (1/2p, 1− 1/2p)-fences is F p

n+1.

1. Introduction

In [6, 7] we showed that the number of ways to tile an n-board using half-squares (12 × 1

tiles with the shorter sides always aligned with the long direction of the board) and (12 ,
1
2)-

fences (where a (w, g)-fence tile is composed of two subtiles (referred to as posts) of size w× 1
separated by a gap of size g×1) is F 2

n+1 where Fn is the nth Fibonacci number (F0 = 0, F1 = 1,
Fn+2 = Fn+1 + Fn) and then used these tilings to formulate combinatorial proofs of identities
relating the Fibonacci numbers squared to themselves and to other number sequences. An
obvious question is whether there is an analogous combinatorial interpretation of higher powers
of the Fibonacci numbers and whether this can be used to give further identities. In Theorem 3
of [8] we showed that the number of tilings of a pn-board using squares and (1, p − 1)-fences
is F pn+1 where p ∈ {2, 3, . . .}. Evidently, the same is true if we lengthwise reduce both tiles
and board by a factor of p. For convenience, we restate and prove the theorem for the case
p = 3 in terms of the tiling using third-square tiles (13 × 1 tiles placed with the shorter sides

horizontal and denoted by t) and (13 ,
2
3)-fence tiles (or fences, f). Before doing so, we introduce

the concept of a slot which is useful when dealing with tilings in which posts and non-fence
tiles have the same width 1/p where p ∈ {2, 3, . . .}. A slot is part of a cell that can be filled
by a post or a non-fence tile and hence there are p slots per cell.

Lemma 1.1. There is a bijection between the tilings of an n-board using third-squares and
(13 ,

2
3)-fences and the tilings of an ordered triple of n-boards using squares and dominoes.

Proof. If a t (left post of an f) occupies the left slot of cell k, place a square (domino) starting
on cell k of the first of the n-boards. Similarly, for each t (left post of an f) occupying the
middle slot of a cell, place a square (domino) on the second n-board to be tiled with squares
and dominoes. For each t (f) occupying the right slot of a cell, place a square (domino) on
the third n-board. Note that each fence occupies two consecutive left, middle, or right slots
and corresponds to one domino. The process is clearly reversible and so the mapping is a
bijection. �

Theorem 1.2. Let An be the number of ways to tile an n-board using third-squares and (13 ,
2
3)-

fences. Then An = F 3
n+1.
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Figure 1. A 15-board tiled with all possible metatiles of length less than 3.
Dashed lines show boundaries between metatiles.

Proof. There are Fn+1 ways to tile an n-board using squares and dominoes [2]. From Lemma 1.1,
An is the same as the number of ways to tile an ordered triple of n-boards using squares and
dominoes which is F 3

n+1. �

Generally, the most helpful way to describe the tilings of n-boards using tiles with gaps or
non-integer length tiles is in terms of metatiles. A metatile is a grouping of tiles that exactly
covers an integral number of cells and cannot be split to make smaller metatiles [4]. The nature
of the identities that can be obtained via combinatorial proof using tilings is determined by the
metatiles. In the case of tiling with half-squares and (12 ,

1
2)-fences, there are infinitely many

metatiles but they are easily described and there are two of each length for lengths larger than
2 [6]. When tiling with third-squares and (13 ,

2
3)-fences, the metatiles do not follow a simple

pattern. However, as we show in the next section, the number of metatiles of each length is
simply related to the Pell numbers. This allows us to obtain a number of identities (Section 3).
We also present another combinatorial interpretation of F pn for p ∈ {2, 3, . . . } in Section 4.

2. Metatiles

When tiling with t and f , the simplest metatiles are three third-squares (denoted by t3)
which has length 1, and the trifence (f3) which is three interlocking fences and is of length 2.
The remaining metatiles of length 2 are shown in Fig. 1.

A mixed metatile is a metatile that contains both t and f . Thus all metatiles are mixed

except t3 and f3. Let µl be the number of mixed metatiles of length l, and µ
[σ]
l be the number

of mixed metatiles of length l that have slot content σ in the final cell where σ is a length-3
binary string with 1 (0) representing a post (third-square). Note that there are just 6 possible

strings for which µ
[σ]
l≥2 is non-zero since 000 and 111 would correspond to a t3 and the end of

a trifence, respectively. From the metatiles in cells 4–15 in Fig. 1 taken in order we see that

µ
[110]
2 = µ

[101]
2 = µ

[011]
2 = µ

[100]
2 = µ

[010]
2 = µ

[001]
2 = 1. (2.1)

Lemma 2.1.

µ
[σ]
l =

{
2µ

[σ]
l−1 + µ

[σ]
l−2 + δl,2 + δl,3, σ ∈ {100, 010, 001},

2µ
[σ]
l−1 + µ

[σ]
l−2 + δl,2 − δl,3, σ ∈ {110, 101, 011},

(2.2)

where δi,j is 1 if i = j and 0 otherwise and µ
[σ]
l<2 = 0.

Proof. Given a metatile of length l−1 with some t in the final cell, we can create a metatile of
length l by replacing one (or more) of the t by, in each instance, the left post of a fence. The
corresponding right post will then lie in the lth cell and the metatile is completed by filling
any empty slots in that cell with third-squares. It is then easily seen that for l > 2,

µ
[100]
l = µ

[010]
l−1 + µ

[001]
l−1 + µ

[011]
l−1 , µ

[010]
l = µ

[100]
l−1 + µ

[001]
l−1 + µ

[101]
l−1 ,

µ
[001]
l = µ

[100]
l−1 + µ

[010]
l−1 + µ

[110]
l−1 , µ

[110]
l = µ

[001]
l−1 , µ

[101]
l = µ

[010]
l−1 , µ

[011]
l = µ

[100]
l−1 .

DECEMBER 2020 129



THE FIBONACCI QUARTERLY

From these equations, their symmetry, and (2.1), we have µ
[100]
l = µ

[010]
l = µ

[001]
l , µ

[110]
l =

µ
[101]
l = µ

[011]
l , and thus for l > 3,

µ
[100]
l = 2µ

[100]
l−1 + µ

[100]
l−2 .

This gives us µ
[110]
l = 2µ

[110]
l−1 + µ

[110]
l−2 for l > 3 as well. Using symmetry, (2.1), µ

[σ]
3 = 3 for

σ ∈ {100, 010, 001}, µ[σ]3 = 1 for σ ∈ {110, 101, 011}, and the fact that there are no mixed
metatiles of length less than 2 leads to the result (2.2). �

Lemma 2.2.

µl = 2µl−1 + µl−2 + 6δl,2, µl<2 = 0. (2.3)

Proof. Sum (2.2) over the 6 possible σ. �

The Pell numbers, Pn≥0 = 0, 1, 2, 5, 12, 29, . . ., obey

Pn = 2Pn−1 + Pn−2 + δn,1 (2.4)

with Pn<1 = 0. Thus on comparing (2.4) with (2.3) we obtain

µl = 6Pl−1, l > 0. (2.5)

From (2.4),

Pn ± Pn−1 = 2(Pn−1 ± Pn−2) + (Pn−2 ± Pn−3) + δn,1 ± δn,2.
Then from (2.2),

µ
[σ]
l =

{
Pl−1 + Pl−2, σ ∈ {100, 010, 001},
Pl−1 − Pl−2, σ ∈ {110, 101, 011}.

(2.6)

3. Identities

Lemma 3.1. For all non-negative integers n,

An = δn,0 +An−1 + 7An−2 +

n∑
l=3

µlAn−l, (3.1)

where An = 0 for n < 0.

Proof. Following [1, 5, 6], we condition on the last metatile. If the last metatile is of length
l there will be An−l ways to tile the remaining n − l cells. There is one metatile of length 1
(t3), seven of length 2, and µl metatiles of length l for each l ≥ 3. If n = l there is exactly
one tiling corresponding to that final metatile so we make A0 = 1. There is no way to tile an
n-board if n < l and so An<0 = 0. �

Identity 3.2. For all non-negative integers n,

F 3
n = δn,1 + F 3

n−1 + F 3
n−2 + 6

n−1∑
l=2

Pl−1F
3
n−l. (3.2)

Proof. It follows from Lemma 3.1, (2.5), P1 equalling 1, and Theorem 1.2. �

Identity 3.3. For n ≥ 0,

F 3
n = δn,1 − 2δn,2 − δn,3 + 3F 3

n−1 + 6F 3
n−2 − 3F 3

n−3 − F 3
n−4. (3.3)
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Proof. Representing (3.1) by E(n), in the equation E(n)− 2E(n− 1)−E(n− 2) we re-index
two of the sums and rearrange to give

An = δn,0 − 2δn,1 − δn,2 + 3An−1 + 6An−2 − 3An−3 −An−4 +
n∑
l=5

(µl − 2µl−1 − µl−2)An−l.

The sum vanishes by virtue of (2.3) and after changing n to n − 1, (3.3) follows from (2.5)
and Theorem 1.2. �

Identity 3.4. For n ≥ 0 and j = 0, 1,

F 3
2n+j+1 = 1 +

n∑
k=1

{
F 3
2k+j + 6

2k∑
i=1

P2k+j−iF
3
i

}
. (3.4)

Proof. How many ways are there to tile a (2n + j)-board using at least one t? Answer 1 :
A2n+j − δj,0 since only the all-trifence tiling has no t and this only occurs for even-length
boards. Answer 2 : the final t must lie on an even (odd) cell if j is 0 (1) since the cells after
this, if any, must be filled with trifences (which are each two cells long). Condition on the
location of the final t. Suppose it is in cell 2k + j (k = δj,0, . . . , n). Either it is part of t3 and
so there are A2k+j−1 ways to tile the remaining cells, or it is part of a mixed metatile and so
there are µ2A2k+j−2 +µ3A2k+j−3 + · · ·+µ2k+jA0 ways to tile the remaining cells. In the latter
case, evidently, k cannot be zero. Hence, equating the answers,

A2n+j − δj,0 =
n∑

k=δj,0

A2k+j−1 +
n∑
k=1

(µ2k+jA0 + µ2k+j−1A1 + · · ·+ µ2A2k−2+j).

Then, after simplifying, (3.4) follows from (2.5) and Theorem 1.2. �

Identity 3.5. For n ≥ 0,

F 3
n+3 − 1 =

n∑
k=0

{
F 3
k+1 + 6

k∑
i=0

Pk+1−iF
3
i+1

}
. (3.5)

Proof. How many ways are there to tile an (n + 2)-board using at least 1 fence? Answer 1 :
An+2−1 since this corresponds to all tilings except the all-t tiling. Answer 2 : condition on the
location of the last fence. Suppose this fence lies on cells k+1 and k+2 (k = 0, . . . , n). Either
there is a trifence covering these cells and so there are Ak ways to tile the remaining cells, or the
cells are at the end of a mixed metatile and so there are µ2Ak+2−2 +µ3Ak+2−3 + · · ·+µk+2A0

ways to tile the remaining cells. Hence, equating the two answers,

An+2 − 1 =
n∑
k=0

{Ak + µk+2A0 + µk+1A1 + · · ·+ µ3Ak−1 + µ2Ak} .

The identity then follows from (2.5) and Theorem 1.2. �

In the following identity we use the fact that the number of ways to tile an n-board using
only t3 and f3 is Fn+1 since this is equivalent to tiling an n-board with squares and dominoes
[3, 2].

Identity 3.6. For n ≥ 0,

F 3
n+1 = Fn+1 + 6

n−2∑
k=0

n−k∑
r=2

Pr−1Fk+1F
3
n+1−k−r. (3.6)
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Proof. How many ways are there to tile an n-board using at least 1 mixed metatile? Answer 1 :
An−Fn+1 since Fn+1 is the number of ways to tile an n-board without using mixed metatiles.
Answer 2 : condition on the position of the first mixed metatile. If it lies on cells k+1 to k+ r
where k = 0, . . . , n− r and r = 2, . . . , n− k, there are Fk+1µrAn−k−r ways to tile the board.
Summing over all possible k and r and equating to Answer 1 gives

An − Fn+1 =
∑

k≥0, r≥2,
k+r≤n

Fk+1µrAn−k−r.

After re-expressing the right-hand side as a double sum, the identity follows from (2.5) and
Theorem 1.2. �

Before proving the remaining identities we need the following lemma.

Lemma 3.7. There are F qnF
3−q
n−1 ways to tile an n-board if the final cell contains q third-squares

where 0 ≤ q ≤ 3.

Proof. We use the bijection described in the proof of Lemma 1.1. For each final cell slot
containing a third-square (post), there corresponds a square-domino tiled n-board that ends
in a square (domino) for which there remain Fn (Fn−1) possible tilings. �

Identity 3.8. For n > 0,

F 2
nFn−1 =

n−1∑
k=1

(Pk + Pk−1)F
3
n−k.

Proof. How many ways are there to tile an n-board that ends with the right post of a fence
which is immediately preceded by two third-squares? Answer 1 : as the final cell contains 2
third-squares, by Lemma 3.7, there are F 2

nFn−1 ways. Answer 2 : the number of possible final

metatiles of length l is µ
[001]
l . Hence if the final metatile has length l, there are µ

[001]
l An−l ways

to tile the board. Summing over all possible l = 2, . . . , n and equating to Answer 1 gives

F 2
nFn−1 =

n∑
l=2

µ
[001]
l An−l.

Replacing l by k + 1 and then using (2.6) and Theorem 1.2 gives the identity. �

Identity 3.9. For n > 0,

FnF
2
n−1 =

n−1∑
k=1

(Pk − Pk−1)F
3
n−k.

Proof. How many ways are there to tile an n-board that ends with the right post of a fence
which is immediately preceded by a third-square which is itself preceded by another right
post? Answer 1 : as the final cell contains 1 third-square, by Lemma 3.7, there are FnF

2
n−1

ways. Answer 2 : the number of possible final metatiles of length l is µ
[101]
l and so the number

of ways to tile the board is
∑n

l=2 µ
[101]
l An−l. Replacing l by k + 1, equating the answers, and

then using (2.6) and Theorem 1.2 gives the identity. �

Our final more aesthetically pleasing identity can be obtained by summing the previous two
although a combinatorial proof can also be obtained by asking how many ways there are to
tile an n-board that ends with the right post of a fence which is immediately preceded by a
third-square.
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Identity 3.10. For n > 0,

Fn+1FnFn−1 = 2

n−1∑
k=1

PkF
3
n−k.

4. Tiling with (1/2p, 1/2− 1/2p)- and (1/2p, 1− 1/2p)-fences

In [7] we showed that enumerating the tilings of an n-board using (14 ,
1
4)- and (14 ,

3
4)-fences

also gives the Fibonacci numbers squared. Here we generalize the result.

Theorem 4.1. For p = 2, 3, . . ., the number of ways to tile an n-board using (1/2p, 1/2−1/2p)-
and (1/2p, 1− 1/2p)-fences is F pn+1.

Proof. We construct a bijection between the tiling of an n-board using (1/2p, 1/2−1/2p)-fences
(denoted by ϕ) and (1/2p, 1− 1/2p)-fences (F ) and the tiling of an n-board with 1/p× 1 tiles
(r, always aligned so that the shorter sides are horizontal) and (1/p, 1−1/p)-fences (f). When
tiling with ϕ and F , in which case there are 2p slots per cell, whatever fills the left half of a
cell determines what will appear in the other half. Clearly, if a left post of a ϕ occurs in the
left half of a cell, the right post will occur p slots later in the right half. If a left post of an F
occurs in the left half of a cell, the pth slot after this must be filled by the left post of another
F , since if the left post of a ϕ were placed there, its right post would coincide with the right
post of the first F . As a result, F ’s always occur in pairs, distance 1

2 apart. If a right post
of an F appears in the left half of a cell, it must be the first of a pair of fences and hence
there will be another right post of an F p slots later. The bijection is then as follows. If an
r appears in slot s (where s = 1, . . . , p) of a cell, place (the left post of) a ϕ in slot s in the
same cell of the ϕ-F board. If the left post of an f is in slot s, place (the left post of) an F
in slot s and another F in slot s+ p of the same cell of the ϕ-F board. Then a right post of
an f in slot s of a cell corresponds to two F right posts in slots s and s+ p in the same cell of
the ϕ-F board (see Fig. 2 for an example). If we expand an r-f tiling lengthwise by a factor
of p, we obtain a tiling of a pn-board using squares and (1, p− 1)-fences. By Theorem 3 of [8]
there are F pn+1 such tilings. �

Figure 2. An example of the bijection between the tiling of a 2-board with r
and f (left, in this instance, 4 r and 2 f) and the tiling of a 2-board with ϕ
and F (right, in this instance, 4 ϕ and 4 F ) when p = 4.

5. Discussion

The approach used here can be generalized to give identities involving higher integer powers
of the Fibonacci numbers. The number of tilings of an n-board with 1/p×1 rectangles (placed
with the shorter sides horizontal) and (1/p, 1− 1/p)-fences is F pn+1. As a cell contains p slots,
there will be p − 1 sets of equations giving the number of metatiles with q posts in the final
cell for q = 1, . . . , p− 1. Combining these will give a (p− 1)th order recursion relation for the
number of metatiles.
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