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Abstract. We continue the work begun in OEIS sequence A332636 which presents recursive
sequences that have triangles that appear embedded in them. This paper i) generalizes the
main result presented in A332636, ii) provides a complete set of definitions and underlying
concepts, and iii) provides a complete proof.

1. Illustrative Examples and Introduction

This introductory section presents illustrative examples of a triangle embedded in a recursive
sequence, a concept introduced in [1]. This paper i) generalizes the main result presented in [1],
ii) provides a complete set of definitions and underlying concepts, and iii) provides a complete
proof. This paper is self-contained; no familiarity with [1] is assumed or needed.

We first provide some needed prerequisites and conventions.
Here and throughout the paper, we deviate from the textbook custom of having the leading

coefficient of a characteristic polynomial equal to one. Instead, we let the leading coefficient
be minus one; as a consequence, the coefficients of the characteristic polynomial are identical
with the coefficients on the right-hand-side of the corresponding recursion.

Here and throughout the paper, recursive sequences will be represented with either the
letter G, or by {Gi}i≥1; characteristic polynomials will be represented by pk(X), where k is
the order of the corresponding recursion.

Here and throughout the paper, given a recursion of order k, the initial values are

G1 = 1, Gi = 0, 2 ≤ i ≤ k. (1.1)

As usual however, a recursive sequence generated by a recursion with constant coefficients may
be made doubly infinite. However, this will not be needed in the sequel.

Here and throughout the paper if r, q are given positive integers with

q ≥ 2, (1.2)

we define
k = k(r) = 1 + rq. (1.3)

For the illustrative example presented in this section, we let q = 3. We consider the following
recursions and associated characteristic polynomials of orders k(r), r = 1, 2, 3.

Gn = Gn−4 −Gn−3 − 25Gn−2 −Gn−1, p4(X) = 2− X5 − 1

X − 1
− 24X2,

Gn = Gn−7 −Gn−6 − 25Gn−5 −
4∑

i=1

Gn−i, p7(X) = 2− X8 − 1

X − 1
− 24X2, (1.4)

Gn = Gn−10 −Gn−9 − 25Gn−8 −
7∑

i=1

Gn−i, p10(X) = 2− X11 − 1

X − 1
− 24X2.
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The triangles that appear embedded in these sequences are found in rectangular arrange-
ments of consecutive sequence members. To describe these rectangles we must indicate i)
where in the recursive sequences these consecutive members begin, ii) the number of rows,
and iii) the number of columns involved.

Given positive integers r, q, (with q satisfying (1.2)), define c(r), the number of columns, for
the rectangle containing the triangle appearing embedded in the recursive sequence of order
k(r), by

c = c(r) = 2 + (r − 1)q. (1.5)

Given the recursions and initial values in (1.4) and (1.1) respectively, and using (1.3) and
(1.5), it is routine to calculate Gk(r)+1, Gk(r)+2, . . . , Gk(r)+rc(r). Tables 1-3 present these se-
quence members laid out as r rows of c(r) columns. The row and column indices for the
rectangle entries are

〈Gk(r)+1, Gk(r)+2, . . . , Gk(r)+rc(r)〉 = 〈R1,1, R1,2, . . . , Rr,c(r)〉. (1.6)

Position 1 2
G5 = R1,1, G6 = R1,2 1 -1

Table 1. 1× 2 rectangle for the order k(1) = 4 recursion

Position 1 2 3 4 5
R1,1, . . . , R1,c 1 -1 0 0 0
R2,1, . . . , R2,c -24 48 -22 -3 1

Table 2. 2× 5 rectangle for the order k(2) = 7 recursion

Position 1 2 3 4 5 6 7 8
R1,1, . . . , R1,c 1 -1 0 0 0 0 0 0
R2,1, . . . , R2,c -24 48 -22 -3 1 0 0 0
R3,1, . . . , R3,c 576 -1728 1632 -336 -188 40 5 -1

Table 3. 3× 8 rectangle for the order k(3) = 10 recursion

These tables nicely illustrate the idea of a triangle appearing embedded in these recursive
sequences. The triangles associated with different recursions show compatibility; for example,
the two triangle rows of the order-7 sequence are also the first two triangle rows of the order-10
sequence with extra zeroes.

Throughout the paper, we will abuse language and refer to configurations similar to those in
Tables 1 - 3 as triangles or rectangles. This should cause no confusion since the term rectangle
refers to the entire rectangular array, while the term triangle refers to the collection of rows
with the zeroes on the right side of these rows omitted.

To present the complete definition of a triangle appearing embedded in a recursive sequence,
we need one more ingredient. To motivate this ingredient notice that we can always take any
rc(r) consecutive members of a recursive sequence and arrange them as a rectangle. A key
point in the above tables is that the triangle’s right-hand side is delimited by a sequence of
zeroes which terminate the rows (except the last). We therefore introduce the function l(t)
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equaling the rectangle position of the last non-zero element of the t-th row. Given an r and
using (1.6), l(t) must satisfy

Rt,l(t) 6= 0, 1 ≤ t ≤ r, (1.7)

and
Rt,u = 0, l(t) < u ≤ c(r), 1 ≤ t ≤ r. (1.8)

Note that l(t) is well defined since l(t) = c(r) if no element in the t− th row is zero.
We summarize the preceding discussion with the following definition.

Definition 1.1. With notations as above, we say that a recursive sequence {Gi}i≥0, of order
k = k(r), for some positive integer r, has a triangle that appears embedded in the sequence (at
Gk+1, . . . , Gk+rc(r)) if (1.7) and (1.8) hold and additionally the sequence l(1), l(2), . . . , l(r) is
strictly increasing. Two sequences of orders k1 = k(r1) and k2 = k(r2) with triangles appearing

embedded in them are compatible if l1(t) = l2(t) = l(t), 1 ≤ t ≤ min(r1, r2), and R
(k1)
t,s = R

(k2)
t,s

for 1 ≤ s ≤ l(t), 1 ≤ t ≤ min(r1, r2) (here, R(ki), i = 1, 2 and li(t), i = 1, 2 are the rectangles of
the order-k1 and order-k2 recursions respectively). A family of recursive sequences appears to
have a triangle embedded in it if all members of the family have triangles appearing embedded
in them and every two members of the family are compatible.

To complete our introductory definitions we need a way to talk about a family of recursive
sequences. The characteristic polynomials presented in (1.4) nicely motivate the idea of using
a Taylor series to indicate a family of recursive sequences.

Definition 1.2. We associate to every Taylor series, T (X), a family of recursive sequences
where the k-th member of the recursive family satisfies the recursion corresponding to the k-th
approximating Taylor polynomial regarded as a characteristic polynomial, with initial values
given by (1.1).

Example 1.3. Let T (X) = 2 − 1
1−X − 24X2. Then the orders 4,7, and 10 members of the

associated family of recursive sequences are the sequences generated by the initial values (1.1)
and the recursions presented in (1.4).

We close this section by pointing out that the triangles that appear embedded in the recur-
sive sequences satisfy a triangle recursion.

Proposition 1.4. If a doubly infinite recursive sequence satisfies a recursion of order m
whose characteristic polynomial is pm(X), then it also satisfies the recursion associated with
(X − 1)pm(X), regarded as a characteristic polynomial.

Proof. Interpret X as the backward shift operator, that is, for any integer i, X(Gi) = Gi−1.
Then since pm(X) regarded as an operator annihilates any recursive sequence which it satisfies,
therefore, (X − 1)pm(X) also annihilates this sequence, because operators are associative.
Therefore, the sequence also satisfies the recursion corresponding to (X − 1)pm(X). �

Comment 1.5. The proposition can clearly be generalized with X − 1 replaced by any poly-
nomial with integer coefficients. However, we will not need this in the sequel.

It follows that the doubly infinite sequences satisfying the three recursions presented in (1.4)
and satisfying (1.1) also satisfy the recursions associated with (X − 1)pk(r)(X). The resulting
corresponding characteristic polynomials and triangle recursions are as follows.

(X − 1)p4(X) = 2(X − 1) − X
5
+ 1 − 24X

3
+ 24X

2
; Rt+1,s = −24Rt,s + 24Rt,s−1 + 2Rt,s−2 − Rt,s−3

(X − 1)p7(X) = 2(X − 1) − X
8
+ 1 − 24X

3
+ 24X

2
; Rt+1,s = −24Rt,s + 24Rt,s−1 + 2Rt,s−2 − Rt,s−3 (1.9)

(X − 1)p10(X) = 2(X − 1) − X
11

+ 1 − 24X
3
+ 24X

2
; Rt+1,s = −24Rt,s + 24Rt,s−1 + 2Rt,s−2 − Rt,s−3.
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The reader can easily verify that the rectangles presented in Tables 1 - 3 satisfy the recursions
given in (1.9) for 1 ≤ t ≤ r, 1 ≤ s ≤ c(r), with the obvious boundary conditions

R0,u = 0, 1 ≤ u ≤ c(r), Rt,1−s = Rt−1,c(r)+1−s, 2 ≤ t ≤ r, 1 ≤ s ≤ c(r). (1.10)

The conditions R0,u = 0, 1 ≤ u ≤ c(r) are consistent with (1.1) and with the fact that by
(1.2), (1.3) and (1.5), c(r) ≤ k(r) − 1 assuring that the set {G2, . . . , Gk(r)} has as least c(r)
zero values.

2. The Main Theorem

This section presents the main theorem which fully generalizes the examples of the preceding
section. The remaining sections of the paper will prove this theorem.

Theorem 2.1. Let q satisfying (1.2) and ai be integers satisfying

ai ≥ 1, 2 ≤ i ≤ q, aq ≥ 2. (2.1)

For positive integer r define k(r) and c(r) by (1.3) and (1.5) respectively. Consider the sub-
family of recursive sequences of orders k(r), r = 1, 2, 3, . . . , associated with the Taylor Series

T (X) = 2− 1

1−X
−

q∑
i=2

(ai − 1)Xi−1. (2.2)

Then with the notation of (1.6), we have
i)

Gk(r)+1 = R1,1 = 1, Gk(r)+2 = R1,2 = −1, Gk(r)+u = R1,u = 0, 3 ≤ u ≤ c(r); (2.3)

ii) The triangle entries Ri,j , 2 ≤ i ≤ r, 1 ≤ j ≤ c(r), satisfy both the underlying recursion
of order k(r) (which in the sequel we will call the G recursion) and the following triangle
recursion (which in the sequel we will call the T recursion)

Ri,j = −(aq− 1)Ri−1,j −
(

(aq−2−aq−1)Ri−1,j−1 + . . .

)
+ (1 +a2)Ri−1,j−q+1−Ri−1,j−q (2.4)

with the boundary conditions given by (1.10);
iii) For 1 ≤ t ≤ r,

Rt,1 6= 0; (2.5)

iv) equations (1.7) and (1.8) are satisfied for 1 ≤ t ≤ r by the function

l(t) = 2 + (t− 1)q; (2.6)

in other words, (2.6) gives the correct functional form for identifying the last non-zero element
in each row;
v) this family of recursive sequences appears to have a triangle embedded in it.

Comment 2.2. By Definition 1.1, i)-iv) implies (v). We will devote one section each to the
proofs of i) and ii) and then one section for the proof of both (iii) and (iv).

This main theorem has been amply illustrated in Section 1. The main theorem generalizes
the result in [1] since the examples in [1] correspond to the special case where only one of the
ai, 2 ≤ i ≤ q, is greater than 1, while the main theorem allows several ai to be greater than 1.
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3. The First Row

The purpose of this section is to prove (2.3). To proceed with the proof we fix an integer r;
by the conventions of (1.3) and (1.5), k and c refer to k(r) and c(r) respectively

To compute values of G we need the underlying recursion which by Definition 1.2 is the
recursion associated with its characteristic polynomial, pk(X), which in turn is the approxi-
mating Taylor polynomial (of degree k) to the Taylor series, (2.2). Therefore, the characteristic
polynomial is given by

pk(X) = 2− Xk+1 − 1

X − 1
−

q∑
i=2

(ai − 1)Xi−1, (3.1)

implying that the recursion is given by

Gn = Gn−k −
(
a2Gn−k+1 + . . . + aqGn−k+q−1

)
−
(
Gn−k+q + Gn−k+q+1 . . . + Gn−1

)
. (3.2)

By (1.3), k > q, and in fact

The coefficients of the last k − q = (r − 1)q + 1 summands

on the right-hand side of (3.2) are -1. (3.3)

We prove (2.3) by computing each of the values Gk+u, 1 ≤ u ≤ c(r).
The value of Gk+1. Letting n = k + 1 in (3.2) shows Gk+1 = 1 since by (1.1), Gn−k =

G1 = 1, but Gi = 0, 2 ≤ i ≤ k.
The value of Gk+2. Letting n = k + 2 in (3.2) and noting that, by (3.3), the coefficient of

Gn−1 in (3.2) is -1, we see that Gk+2 = −1, since by (1.1), Gi = 0, 2 ≤ i ≤ k.
If r = 1, then by (1.5), c = 2 and we have completed the proof of (2.3). Therefore, for the

rest of the proof we assume r ≥ 2.
The value of Gk+3. Let n = k+3 in (3.2). By our assumption on r and (3.3), the last two

coefficients in (3.2) are minus 1. Therefore Gk+3 = −Gn−2 −Gn−1 = −(Gk+2 + Gk+1) = 0 by
(1.1) and by the results we just proved for Gk+1, Gk+2.

The value of Gk+u, 4 ≤ u ≤ c. Using an induction assumption, assume Gk+u = 0, 3 ≤
u ≤ v − 1 ≤ c − 1, the base case when v = 4 having just been proven. We proceed to prove
Gk+v = 0. Let n = k + v in (3.2). Gk+v = 0 iff both Gn−(v−1) = Gk+1 and Gn−(v−2) = Gk+2

have a coefficient of minus 1 in (3.2), since then, by (1.1) and our induction assumption,
Gk+v = −Gn−(v+2) − Gn−(v+1) = −(Gk+1 + Gk+2) = 0. The proof is therefore completed by
(3.3).

This completes the proof of (2.3).

4. The Triangle Recursion

In this section, we prove (2.4).
Fix r ≥ 2. The characteristic polynomial for the member of the recursive family of degree

k is given by (3.1).
By Proposition 1.4, the recursive sequence of this family member also satisfies

(X − 1)pk(X) = 2(X − 1)− (Xk+1 − 1)− (X − 1)

q∑
i=2

(ai − 1)Xi−1. (4.1)
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In the sequel, we will speak about the three summands in (4.1) with the understanding that the
first summand refers to 2(X − 1), the second summand refers to the parenthetical expression
(Xk+1 − 1), and the third summand refers to the product of (X − 1) with the sum.

We now calculate the coefficients of Xu, 0 ≤ u ≤ k + 1, in (4.1).

• Clearly, the highest exponent occurring in (4.1) is k + 1; the coefficient of Xk+1 is -1,
since by (1.3), q < k − 1 and therefore only the second summand contributes to this
coefficient.
• The second biggest exponent occurring in (4.1) is q; the coefficient of Xq is −(aq − 1).
• The coefficient of X0 is -1 since the contributions from the three summands are -2, 1,

and 0 respectively.
• The coefficient of X1 is 1 + a2 since the first and third summands contribute 2 and
a2 − 1 respectively.
• The coefficient of Xe, for 2 ≤ e ≤ q − 1, is −(ae − ae+1) since only the third summand

contributes.

Therefore, the recursion corresponding to (X − 1)pk(X) is

Gn = −(aq−1)Gn−(k+1−q)−
(

(aq−1−aq)Gn−(k+1−(q−1)) . . .

)
+(1+a2)Gn−(k+1−1)−Gn−(k+1)

(4.2)
To complete the proof of (2.4), we must convert (4.2) into (2.4). First observe, that by (1.3)

and (1.5)

k + 1− q = (1 + rq) + 1− q = 2 + (r − 1)q = c.

It immediately follows that

Gn−(k+1−q) = Gn−c. (4.3)

Equation (4.3) motivates the idea of representing the linear sequence by a rectangular array,
since to compute Gn, instead of going back k + 1− q columns, one only need go up one row,
provided the row lengths are c. This motivation will be made precise in the corollary below.

First however, we complete the proof. Let n = k + u for some u, c + 1 ≤ u ≤ rc. Then by
(1.6)

Gn = Rt,s, for some t, s with 2 ≤ t ≤ r, 1 ≤ s ≤ c

But then, using (4.3),

Gn−(k+1−q) = Rt−1,s, (4.4)

since the lengths of all rows are c. Equation (4.4) implies

Gn−(k+1−q)−u = Rt−1,s−u, 1 ≤ u ≤ q,

and this completes the proof of (2.4).

Corollary 4.1. Computation of Gn requires:

• A lookback of k columns and k multiplications using the G recursion, (3.2);
• A lookback of q columns one row up and q + 1 multiplications using the T recursion,

(2.4).

A key point of this corollary is that k is going to infinity while q is constant.
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5. Completion of Proof of the main theorem

In this section, we prove (iii) and (iv) of the main theorem. We first review what is given
and what has to be proven. We are given a positive integer q satisfying (1.2), coefficients
ai, 2 ≤ i ≤ q, satisfying (2.1), and a power series (2.2). Using q, we define k and c using (1.3)
and (1.5). These numbers are given and fixed.

Given positive integers t and r with 1 ≤ t ≤ r, we must prove, using (1.6), that (2.5) holds
and that (1.7) and (1.8) are satisfied using the function presented in (2.6). To further clarify
this, note that in Section 1, we defined l(t) in terms of its properties, (1.7) and (1.8); it is the
rectangle-column position of the last non-zero entry in the t-th row. What we must prove is
that for each t, the functional form for l(t) presented in (2.6) has these defined properties.

The proof will be by induction on t.
For a base case, let t = 1. By (2.6), l(1) = 2. Equations (2.5), (1.8), and (1.7) then follow

from (2.3).
Clearly, if r = 1, we are done. Therefore for the rest of the proof we assume r ≥ 2.
Further assume, using an induction assumption, that (1.7), (1.8), and (2.5) using (2.6) are

true for the cases 1, 2, . . . , t− 1 for some t satisfying

2 ≤ t ≤ r. (5.1)

To complete the proof, we must use (2.6) for the case t, and show that (2.5), (1.8), and (1.7)
all hold for the case t.

Proof of (1.7) using (2.6). First note that by (2.6)

l(t) = 2 + (t− 1)q = l(t− 1) + q. (5.2)

Let i = t and j = l(t) in (2.4). Then by (5.2), the last summand on the right-hand side of
(2.4) satisfies −Ri−1,j−q = −Rt−1,l(t)−q = −Rt−1,l(t−1) 6= 0, the last inequality following from
the induction assumption.

To complete the proof of (1.7), it suffices to show that the remaining summands on the right-
hand side of (2.4) are equal to 0. This follows immediately from the induction assumption on
(1.8) and by the observation that l(t− 1) + q < c(r) which follows from (5.1), (5.2), and (1.5).

Proof of (1.8). Let u satisfy

l(t) + 1 ≤ u ≤ c(r). (5.3)

Let i = t and j = u in (2.4). We claim that all q+ 1 summands on the right-hand side of (2.4)
are 0. Indeed, these q + 1 summands contain the following factors:

{Rt−1,k : u− q ≤ k ≤ u} ⊂ {Rt−1,k : 1 + l(t− 1) ≤ k ≤ c(r)},
the set inclusion following from (5.3) and (5.2). The proof of (1.8) is completed by the
induction assumption on (1.8).

Proof of (2.5). In (2.4), let i = t and j = 1. Then the first summand on the right-hand
side of (2.4) satisfies −(aq−1)Rt−1,1 6= 0, the inequality following from (2.1) and the induction
assumption on (2.5).

To complete the proof of (2.5), it suffices to show the remaining q summands on the right-
hand side of (2.4) are 0.

By (1.10), these q summands contain factors

{Rt−1,1−u}1≤u≤q = {Rt−2,c+1−u}1≤u≤q. (5.4)

We claim these factors are all 0. To prove this we consider two cases.
Case t = 2. That all rectangle elements on the right-hand side of (5.4) are zero follows

from (1.1) and the observation that 2 ≤ c− q + 1 which follows from (1.5) and (5.1).
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Case t ≥ 3. The fact that the rectangle elements the right-hand side of (5.4) are all zero
follows from our induction assumption on (1.8) for the case t − 2, and the observation that
l(t− 2) + 1 ≤ c− q + 1 which follows from (5.1), (2.6), and (1.5).

The proof of the main theorem is complete. Some descriptive corollaries are easy conse-
quences.

Corollary 5.1. With notations as above, for 1 ≤ t ≤ r,

Rt,1 =

(
−(aq − 1)

)(t−1)

, Rt,l(t) = (−1)t.

Proof. Equation (2.3) shows this corollary true for t = 1. Inspecting the proof presented above
shows that for t ≥ 2, Rt,1 = Rt−1,1 ×−(aq − 1) and Rt,l(t) = Rt−1,l(t−1) ×−1. �

Corollary 5.2. The sequence of the positions of the last non-zero element in the rows of the
rectangle appearing embedded in the recursive sequence of order k(r) is an arithmetic sequence
with common difference, q.

〈l(1), l(2), . . . , l(r)〉 = 〈2, 2 + q, 2 + 2q, . . . , 2 + (r − 1)q = c〉

Table 3 nicely numerically illustrates both corollaries.

6. conclusion

In concluding the paper, we mention some frequently asked questions. The idea of triangles
embedded in recursions was first presented orally at the West Coast Number Theory conference
in 2017 during one of the problem sessions. The theory as presented in this paper evolved
over the past three years at several conferences including the Sarajevo conference on Fibonacci
numbers and their applications. Understandably, the same questions tend to be repeated. We
single out two frequently asked questions.

People frequently ask what would happen if there were no ai, 1 ≤ i ≤ q, (2.1). It turns out
this was the initial case presented orally (as a sketch) in 2017. It was not included in the main
theorem to avoid introducing several necessary distinctions.

But the main results can be summarized as follows. First (1.3) must be replaced by k(r) =
1 + r, r = 1, 2, 3, . . . . Equations (1.5) and (2.6) are replaced by c(r) = 2 + (r − 1), l(t) =
2 + (r − 1). The main theorem can then be formulated in terms of the family of recursive
sequences associated with the Taylor series T (X) = 2 + 1

1−X . The main theorem would state

that for each r, the associated recursion of order k(r) appears to have a triangle (or an r×c(r)
rectangle) embedded in it. Here, the associated recursion of order k(r) is, as in this paper, the
recursion corresponding to the approximating polynomial of T (X), with initial values given
by (1.1). The corresponding triangle recursion is Rt,s = 2Rt−1,s−Rt−1,s−1. For r = 3 the first
three rows laid out in a 3× 4 rectangle are presented in Figure 4.

Position 1 2 3 4
R1,1, . . . , R1,c 1 -1 0 0
R2,1, . . . , R2,c 2 -3 1 0
R3,1, . . . , R3,c 4 -8 5 -1

Table 4. 2× 4 rectangle for the order k(3) = 4 recursion
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A second frequently question asked is whether there are examples of the general theory with
a Taylor series not involving a geometric series. This is an open question. One can take any
Taylor series based on a rational function and develop a family of recursive sequences and view
the rectangles that appear embedded in them which do obey the triangle recursion presented
in Proposition 1.4 (with appropriate adjustments for the denominator of the rational function).
The catch is there are no triangles in these rectangles because the delimiting zeroes are not
present.

This observation illuminates the main theorem presented in this paper. The coefficients in
the Taylor series T (X) must avoid any rapid increase so that the associated recursive sequences
have sufficient zeroes in them. Thus, it remains an open problem to find examples of the theory
presented in this paper based on a Taylor series without a geometric series component.
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