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Abstract. Using the golden ratio φ, a triangle whose side length ratio can be expressed as
1 :

√
φ : φ represents a right triangle since the golden ratio has the property of φ2 = φ + 1

and therefore satisfies 12 + (
√
φ)2 = φ2. This triangle is called the Kepler triangle.

As in the case of the Kepler triangle, in this study we determine triangles where the length
of the three sides is expressed using only the constant obtained from the linear recurrence
sequence (golden ratio, plastic constant, tribonacci constant and supergolden ratio).

1. Introduction

The Fibonacci numbers are defined by the recurrence

Fn+2 = Fn+1 + Fn

with the initial values F0 = 0, F1 = 1, and the limit of the ratios of successive terms converges
to

lim
n→∞

Fn
Fn−1

= φ =
1 +
√
5

2
≈ 1.61803 · · · ;

φ is called the golden ratio. One property of the golden ratio is φ2 = φ + 1; it is also an
algebraic integer of degree 2.

By the property of the golden ratio and the Pythagorean theorem, we have

φ2 = φ+ 1 ⇐⇒ 12 + (
√
φ)2 = φ2.

Since the ratio of the lengths of the three sides is 1 :
√
φ : φ, this triangle is a right triangle,

called the Kepler triangle. In addition, the following are known as characteristic triangles.
An isosceles triangle whose three side length ratios can be expressed as φ : φ : 1 is called a
golden triangle. The three angles are 36° − 72° − 72°. An isosceles triangle whose three sides
length ratio can be expressed as 1 : 1 : φ is called a golden gnomon. The three angles are
108°− 36°− 36°.

From the above, it was found that there are many triangles in which three sides have an
integer power of the golden ratio and at least one of the internal angles is an integer degree.
Extending these, is there any other triangle whose three sides are rational powers of constants
obtained from the linear recurrence sequence and at least one of the internal angles is an integer
degree, and how many? I think these questions arise naturally.

1.1. The constant obtained from a linear recurrence sequence. The following are
known as constants obtained from a linear recurrence sequence.

Definition 1.1 (Padovan Sequence). The Padovan sequence is defined by the recurrence

Pn+3 = Pn+1 + Pn

with the initial values P0 = P1 = 0, P2 = 1.

166 VOLUME 58, NUMBER 5



RATIONAL POWER OF THE PLASTIC CONSTANT

The limit of the ratios of successive terms converges to

lim
n→∞

Pn
Pn−1

= ρ ≈ 1.32471795 · · · ,

and ρ is called the plastic constant. Property of the golden ratio is ρ3 = ρ + 1. It is also an
algebraic integer of degree 3.

Definition 1.2 (Tribonacci sequence). The Tribonacci sequence is defined by the recurrence

Tn+3 = Tn+2 + Tn+1 + Tn

with the initial values T0 = T1 = 0, T2 = 1.

The limit of the ratios of successive terms converges to

lim
n→∞

Tn
Tn−1

= t ≈ 1.83929 · · · ,

and t is called the Tribonacci constant. A property of this constant is t3 = t2 + t+1. It is also
an algebraic integer of degree 3.

Definition 1.3 (Narayana’s cows sequence). The Narayana’s cows sequence is defined by the
recurrence

Nn+3 = Nn+2 +Nn

with the initial values N0 = N1 = 0, N2 = 1.

The limit of the ratios of successive terms converges to

lim
n→∞

Nn

Nn−1
= ψ ≈ 1.46557 · · · ,

and ψ is called the supergolden ratio. A property of this constant is ψ3 = ψ2 + 1. It is also an
algebraic integer of degree 3.

2. Conditions for Special Triangles

2.1. Condition. Let 4ABC be a triangle with 6 C = θ. Using the law of cosine, we have

a2 + b2 − 2ab cos θ = c2.

Suppose here that the ratio of the sides of the triangle is represented by rational powers of a
positive constant x( 6= 1). Let the ratio of the three sides length be expressed as

a : b : c = 1 : xα : xβ.

Hereafter, such a triangle will be denoted as (0, α, β)x. (Since x0 = 1, we used 0.)
At this time, the relational expression of the three sides becomes

1 + x2α − 2xα cos θ = x2β.

Remark 2.1. Consider x = 1, 4ABC is a regular triangle. So (0, 0, 0)x. Therefore x is any
constant.

Theorem 2.2 (Trigonometric functions and rational numbers [1933, Lehmer]). If n > 2 and
(k, n) = 1, then 2 cos 2πk/n is an algebraic integer of degree φ(n)/2, where φ(n) is the Euler’s
totient function. For positive n 6= 4, 2 sin 2πk/n is an algebraic integer of degree φ(n), φ(n)/4,
or φ(n)/2 according as (n, 8) < 4, (n, 8) = 4, or (n, 8) > 4.

Corollary 2.3 (Algebraic integers of degree 3 or less). The following can be said about 0° ≤
θ ≤ 180°.
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Degree 1: n = 1, 2, 3, 4, 6. In other words, θ = 0°, 60°, 90°, 120°, 180°.
Degree 2: n = 5, 8, 10, 12. In other words, θ = 30°, 36°, 45°, 72°, 108°, 135°, 144°, 150°.
Degree 3: n = 9, 18. In other words, θ = 20°, 40°, 80°, 100°, 140°, 160°.

Remark 2.4. n = 7, 14 is included in degree 3. However, θ is NOT an integer angle.

Proposition 2.5. Substituting the above values of θ into 1 + x2α − 2xα cos θ = x2β gives the
following relational expression.

θ = 0(= 0°): x2β = (xα − 1)2 =⇒ xβ = xα − 1.
θ = π

3 (= 60°): x2β = x2α − xα + 1.
θ = π

2 (= 90°): x2β = x2α + 1.
θ = 2π

3 (= 120°): x2β = x2α + xα + 1.
θ = π(= 180°): x2β = (xα + 1)2 =⇒ xβ = xα + 1.

2.2. Trivial case.

2.2.1. Triangular condition obvious in θ = π (= 180°). Since the relational expression is xβ =
xα + 1, it is obvious that the triangle (0, α, β)x satisfies the condition.

Example 2.6. (0, 1, 2)φ, (0, 1, 3)ρ, (0, 2, 3)ψ.

Remark 2.7 (θ = 0 (= 0°)). 6 C = 180° ⇐⇒ 6 A = 6 B = 0°. So we can replace the contents
of the above example and change it to (α, β, 0)x and (0, β, α)x.

2.2.2. Triangular condition obvious in θ = π
2 (= 90°). Since the relational expression is x2β =

x2α + 1, it is obvious that the triangle (0, α2 ,
β
2 )x satisfies the condition.

Example 2.8.
(
0, 12 , 1

)
φ
,
(
0, 12 ,

3
2

)
ρ
,
(
0, 1, 32

)
ψ
.

2.2.3. Triangular condition obvious in θ = 2π
3 (= 120°). Since the relational expression is

x2β = x2α + xα + 1, it is obvious that the triangle (0, 1, 32)t satisfies the condition.

2.3. Non-trivial case.

2.3.1. Triangle (0, 2, 52)x in θ =
π

2
(= 90°). In this case it satisfies

x5 = x4 + 1 ⇐⇒
(
x2 − x+ 1

) (
x3 − x− 1

)
= 0.

Since x2 − x+ 1 = (x− 1
2)

2 + 3
4 > 0, we have

x5 = x4 + 1 =⇒ x3 − x− 1 = 0.

If this triangle is
(
0, 2, 52

)
ρ
, since the property that the plastic constant satisfies is

ρ3 = ρ+ 1,

so this triangle obviously satisfies the condition.

Remark 2.9 (θ = π (= 180°)). (0, 4, 5)ρ also satisfies the condition.
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2.3.2. Triangle (0, 2, 32)x in θ =
π

3
(= 60°). In this case it satisfies

x3 = x4 − x2 + 1 ⇐⇒ (x− 1)
(
x3 − x− 1

)
= 0.

Since x 6= 1, we have
x3 = x4 − x2 + 1 =⇒ x3 − x− 1 = 0.

If this triangle is
(
0, 2, 32

)
ρ
, since the property that the plastic constant satisfies is

ρ3 = ρ+ 1,

so this triangle obviously satisfies the condition.

2.3.3. Triangle (0, 3, 52)x in θ =
π

3
(= 60°). In this case it satisfies

x5 = x6 − x3 + 1 ⇐⇒ (x− 1)
(
x2 + 1

) (
x3 − x− 1

)
= 0.

Since x 6= 1 and x2 + 1 > 0, we have

x5 = x6 − x3 + 1 =⇒ x3 − x− 1 = 0.

If this triangle is
(
0, 3, 52

)
ρ
, since the property that the plastic constant satisfies is

ρ3 = ρ+ 1,

so this triangle obviously satisfies the condition.

2.3.4. Triangle (0, 1, 52)x in θ =
2π

3
(= 120°). In this case it satisfies

x5 = x2 + x+ 1 ⇐⇒
(
x2 + 1

) (
x3 − x− 1

)
= 0.

Since x2 + 1 > 0, we have

x5 = x2 + x+ 1 =⇒ x3 − x− 1 = 0.

If this triangle is
(
0, 1, 52

)
ρ
, since the property that the plastic constant satisfies is

ρ3 = ρ+ 1,

so this triangle obviously satisfies the condition.

2.3.5. Triangle (0, 1, 2)x in θ =
2π

3
(= 120°). In this case it satisfies

x4 = x2 + x+ 1 ⇐⇒ (x+ 1)
(
x3 − x2 − 1

)
= 0.

Since x+ 1 > 0, we have

x4 = x2 + x+ 1 =⇒ x3 − x2 − 1 = 0.

If this triangle is (0, 1, 2)ψ, since the property that the supergolden ratio satisfies is

ψ3 = ψ2 + 1,

so this triangle obviously satisfies the condition.
The following results were obtained for the non-trivial cases.
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θ Ratio Constant

π

2
(= 90°)

(
0, 2,

5

2

)
ρ

Plastic Constant

π

3
(= 60°)

(
0, 2,

3

2

)
ρ

Plastic Constant

π

3
(= 60°)

(
0, 3,

5

2

)
ρ

Plastic Constant

2π

3
(= 120°)

(
0, 1,

5

2

)
ρ

Plastic Constant

2π

3
(= 120°) (0, 1, 2)ψ Supergolden Ratio

π(= 180°) (0, 4, 5)ρ Plastic Constant

2.4. Other non-trivial cases (golden triangle and golden gnomon).

Proposition 2.10. The following results were obtained for θ =
π

5
,
2π

5
,
3π

5
related to the golden

ratio.
θ = π

5 (= 36°): (0, 0,−1)φ, (0, 1, 0)φ.
θ = 2π

5 (= 72°): (0, 1, 1)φ.
θ = 3π

5 (= 108°): (0, 0, 1)φ.

Remark 2.11. θ = 4π/5(= 144°) is NOT a triangle that satisfies the condition because the
triangle (0, α, β)φ satisfies

1 + x2α − xα+1 = x2β ⇐⇒ (L2α + Lα+1 − L2β + 2) +
√
5(F2α + Fα+1 − F2β) = 0,

and L2α + Lα+1 − L2β + 2 6= 0. So this Diophantine equation has no solution.

Remark 2.12. These match the special name triangles:
• Triangle (0, 0,−1)φ and (0, 1, 1)φ are golden triangles.
• Triangle (0, 1, 0)φ and (0, 0, 1)φ are golden gnomons.

3. Summary

• We have determined all triangles where at least one angle is an integer and the ratio
of the side lengths is a rational power of the golden ratio, the plastic constant, the
tribonacci constant, or the supergolden ratio.
• We find that many non-trivial triangles use the plastic constant.

4. Future work

If we do not add the condition of integer angles, we can construct many triangles with side
lengths a rational powers of a constant. Can we find the ratio of the side lengths of the triangle
where at least one angle is an integer, using only the value of a rational power of a constant
obtained from a linear recurrence sequence?
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