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Abstract. This paper takes a historical view of some long-standing problems associated with
the development of sums of Fibonacci numbers in which the latter have powers of integers as
coefficients. The sequences of coefficients of these polynomials are arrayed in matrices with
links to The On-Line Encyclopedia of Integer Sequences. This is an extension of previous work
on the summation problem of Ledin because Brousseau introduced some elegant techniques
for contracting the summations and the papers of both authors link with some interesting
matrices.

1. Introduction

Brousseau [1] and Ledin [4] studied Fibonacci sums of the form

S (m,n) =
n∑

k=1

kmFk (1.1)

for integerm,n ≥ 0 and where Fk is the kth Fibonacci number, and generalized the calculations
of them up to a point. As an example, S(2, 2) = F1 + 4F2 = 5. Shannon and Ollerton [6]
discussed some further generalisations and developed a recurrence relation with associated
conjectures. It is the purpose of this note to extend from Brousseau’s paper some number
theoretic techniques for further exploration and to revisit the recurrence relation of [6] using
matrix methods.

2. Using Brousseau’s Approach

Ledin showed that equation (1.1) can be expressed in the form

S (m,n) = P1 (m,n)Fn + P2 (m,n)Fn+1 + C (m) (2.1)

in which C(m) is a constant depending only on m, and P1(m,n) and P2(m,n) are polynomials
in n of degree m of the form

Pi (m,n) =

m∑
j=0

(−1)j
(
m

j

)
Mi,jn

m−j , i = 1, 2, (2.2)

where M1,j and M2,j are integers dependent only on j.
In this section, we provide additional results for the S(m,n), Pi(m,n) and C(m) functions.

The following are examples of equation (2.1) for m = 4, 5 to make the subsequent discussion
clearer:

We thank the participants of the 19th International Fibonacci Conference for useful comments on an earlier
version.
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S(4, n) =
(
n4 − 4n3 + 30n2 − 124n+ 257

)
Fn

+
(
n4 − 8n3 + 48n2 − 200n+ 416

)
Fn+1 − 416,

S (5, n) =
(
n5 − 5n4 + 50n3 − 310n2 + 1285n− 2671

)
Fn

+
(
n5 − 10n4 + 80n3 − 500n2 + 2080n− 4322

)
Fn + 4322.

It was also shown previously [6] that M1,j and M2,j follow the patterns set out in Table 1. The
On-Line Encyclopedia of Integer Sequences (OEIS) [7] notes that sequence A000556 gives the
coefficients of the expansion of e−x/(1− ex + e−x).

Table 1. M1,j and M2,j

j 0 1 2 3 4 5 6 7 OEIS

M1,j 1 1 5 31 257 2671 33305 484471 A000556

M2,j 1 2 8 50 416 4322 53888 783890 A000557

We start with the P functions themselves since they are part of the main result and the
referee of the previous paper [6] raised a question about the polynomial nature of P1(m,n).
Suppose we consider a real variable x in equation (2.2), then

d

dx
P1 (m+ 1, x) =

m+1∑
j=0

(−1)j (m+ 1− j)
(
m+ 1

j

)
M1,jx

m−j

=

m∑
j=0

(−1)j (m+ 1)
m!

(m− j) ! j!
M1,jx

m−j

= (m+ 1)

m∑
j=0

(−1)j
(
m

j

)
M1,jx

m−j

= (m+ 1)P1(m,x).

Similarly,
d

dx
P2 (m+ 1, x) = (m+ 1)P2 (m,x) . (2.3)

Ledin arrived at similar results though in a less direct manner (and [4] contains typographical
errors in the statement of the P2 case). They do suggest though that rather than using a
differential operator we try using a difference operator:

∆yn = yn+1 − yn. (2.4)

Following Brousseau, we consider a quantity of the form f [n, F(n)], a function of n and
Fibonacci numbers involving n in their subscripts, and define the adapted finite difference
relation as follows:

∆f
[
n, F(n)

]
= f

[
n+ 1, F(n+1)

]
− f

[
n, F(n)

]
. (2.5)
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For example:

∆
(
n2Fn

)
= (n+ 1)2Fn+1 − n2Fn

= n2Fn−1 + (2n+ 1)Fn+1.

Similarly, the corresponding inverse operator ∆−1 is defined so that

∆−1
(
f
[
(n+ 1) , F(n+1)

]
− f

[
n, F(n)

])
= f

[
n, F(n)

]
+ C1, (2.6)

where C1 is an arbitrary summation constant independent of n. Pond [5] has made use of
forms of these two operators to establish several Horadam sequence summations [3] which can
also be related to this present work through their well-known connections with the Fibonacci
sequence.

Following Brousseau, if we let S (m,n) =
∑n

k=1 k
mFk be denoted by φ

[
(n+ 1) , F(n+1)

]
,

then
S (m,n) = φ

[
n, F(n)

]
+ nmFn, (2.7)

with the difference relations

∆
(
φ
[
n, F(n)

])
=

n∑
k=1

kmFk −
n−1∑
k=1

kmFk

= nmFn

and

∆−1 (nmFn) = φ
[
n, F(n)

]
+ C1 (m)

= S (m,n− 1) + C1 (m)

where the dependency of the summation constant on m in this case is noted. For example:

∆ (nFn+1) = (n+ 1)Fn+2 − nFn+1

= (n+ 1)Fn+2 − n (Fn+2 − Fn)

= nFn + ((n+ 1)− n)Fn+2

= nFn + ∆ (n)Fn+2

and

∆
(
n2Fn+1

)
= (n+ 1)2 Fn+2 − n2Fn+1

= n2Fn + (2n+ 1)Fn+2

= n2Fn + ∆
(
n2
)
Fn+2.

In general,
∆ (nmFn+1) = nmFn + ∆ (nm)Fn+2. (2.8)

Similarly, with ∆t denoting repeated applications of the difference operator, it can be shown
that

∆−1 (nmFn) =
m∑
t=0

(−1)t∆t (nm)Fn+2t+1 + C2 (m) (2.9)

for summation constant C2(m), which can be verified by calculating ∆(∆−1(nmFn)), the left
hand side of which is obviously nmFn, and noting the contractions that occur on the right
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hand side when adding terms of the form

∆
(
(−1)t ∆t (nm)Fn+2t+1

)
= (−1)t

(
∆t (nm)Fn+2t + ∆t+1 (nm)Fn+2(t+1)

)
,

t = 0, 1, . . . ,m. (2.10)

Thus,

S (m,n− 1) =
m∑
t=0

(−1)t∆t (nm)Fn+2t+1 + C (m) (2.11)

where the summation constant C(m) is determined by use of S(m, 0) = 0 in equation (2.1).
Brousseau’s approach leads to some contractions in the summations. For example, with

repeated use of the connections between adjacent Fibonacci numbers in the case of m = 3,
equation (2.9) gives:

∆−1
(
n3Fn

)
= n3Fn+1 −∆

(
n3
)
Fn+3 + ∆2

(
n3
)
Fn+5 −∆3

(
n3
)
Fn+7 + C2 (3)

= n3Fn+1 −
(
3n2 + 3n+ 1

)
Fn+3 + (6n+ 6)Fn+5 − 6Fn+7 + C2 (3)

=
(
n3 − 3n2 + 9n− 19

)
Fn+3 −

(
n3 − 6n+ 12

)
Fn+2 + C2 (3) .

Another example with the difference operators applied to Brousseau’s method is from (2.11)
with m = 5 and summation terms evaluated at n = 50:

S (5, 49) =

49∑
k=1

k5Fk

= [n5F51 −∆
(
n5
)
F53 + ∆2

(
n5
)
F55 −∆3

(
n5
)
F57

+ ∆4
(
n5
)
F59 −∆5

(
n5
)
F61]n→50 + C (5) .

Some of the terms are calculated as in Table 2. That is,

Table 2.
[
∆t
(
n5
)]

n→50
, t = 0, 1, . . . , 5

t
[
∆t
(
n5
)]

n→50
Value

0 505 312500000

1 515 − 505 32525251

2 525 − 2 · 515 + 505 2653530

3 535 − 3 · 525 + 3 · 515 − 505 159150

4 545 − 4 · 535 + 6 · 525 − 4 · 515 + 505 6240

5 555 − 5 · 545 + 10 · 535 − 10 · 525 + 5 · 515 − 505 120

49∑
k=1

k5Fk = 312500000F51 − 32525251F53 + 2653530F55

− 159150F57 + 6240F59 − 120F61 + C (5) , (2.12)

in which the constant C(5) can be found from equations (2.1) and (2.2) with Table 1 as

C(5) = −P2 (5, 0) = M2,5 = 4322,

DECEMBER 2020 193



THE FIBONACCI QUARTERLY

or by applying Brousseau’s approach with n = 1:

0 = S (5, 0)

=

0∑
k=1

k5Fk

=
[
∆−1

(
n5Fn

)]
n→1

= [n5F2 −∆
(
n5
)
F4 + ∆2

(
n5
)
F6 −∆3

(
n5
)
F8

+ ∆4
(
n5
)
F10 −∆5

(
n5
)
F12]n→1 + C (5)

= −4322 + C (5)

after calculating
[
∆t
(
n5
)]

n→1
in similar manner to Table 2. Thus,

49∑
k=1

k5Fk = 312500000F51 − 32525251F53 + 2653530F55

− 159150F57 + 6240F59 − 120F61 + 4322

= 4947840524712253969.

The preceding example also motivates the following formula for the C(m) terms of Ledin’s
form for S (m,n) =

∑n
k=1 k

mFk = P1 (m,n)Fn + P2 (m,n)Fn+1 + C(m) using Brousseau’s
approach:

C (m) = −P2 (m, 0)

= (−1)m+1M2,m (2.13)

= −
m∑
t=0

(−1)t
[
∆t (nm)

]
n→1

F2+2t.

The summation constants from repeated use of (2.9) or (2.11), as set out below:

S (0, n) = (1)Fn + (1)Fn+1 − (0F2 + 1F1) = (1)Fn + (1)Fn+1 − 1,

S (1, n) = (n− 1)Fn + (n− 2)Fn+1 + (1F3 + 0F2)

= (n− 1)Fn + (n− 2)Fn+1 + 2,

S (2, n) =
(
n2 − 2n+ 5

)
Fn +

(
n2 − 4n+ 8

)
Fn+1 − (2F4 + 1F3)

=
(
n2 − 2n+ 5

)
Fn +

(
n2 − 4n+ 8

)
Fn+1 − 8,

S (3, n) =
(
n3 − 3n2 + 15n− 31

)
Fn +

(
n3 − 6n2 + 24n− 50

)
Fn+1 + (7F5 + 5F4)

=
(
n3 − 3n2 + 15n− 31

)
Fn +

(
n3 − 6n2 + 24n− 50

)
Fn+1 + 50,

and shown further in Table 3, confirm that the absolute values of the summation constants
C(m) do belong to the sequence M2,j . The Fibonacci expressions are not unique and the
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coefficients do not seem to belong to known OIES sequences, so interested readers may like to
explore these expressions further.

Table 3. Summation constants (unsigned, c.f. Table 1)

m Fibonacci Expression Value

0 0F2 + 1F1 1

1 1F3 + 0F2 2

2 2F4 + 1F3 8

3 7F5 + 5F4 50

4 37F6 + 24F5 416

5 242F7 + 147F6 4322

6 1861F8 + 1139F7 53888

7 16679F9 + 10324F8 783890

8 171362F10 + 106089F9 13031936

3. Using Matrix Methods

In this section, matrix methods will be used to explore the S (m,n) =
∑n

k=1 k
mFk function

from two perspectives: a previously derived recurrence relation for S(m,n), and Brousseau’s
approach described above.

Recurrence Relation. In [6], the authors of the present note used algebraic methods to show
that S(m,n) satisfies a linear recurrence relation in m, as follows. For integer m,n ≥ 0, let

p (m,n) =

n∑
k=1

km =

m+1∑
j=0

am+1,jn
j (3.1)

where

am+1,j =
1

(m+ 1)

(
m+ 1

j

)
B+

m+1−j (j > 0) (3.2)

and B+
i are the appropriately signed Bernoulli numbers, and let

bm+1,j =

m+1∑
r=j

(
r

j

)
am+1,r (3.3)

for j 6= m; in the case j = m, let b1,0 = 2 and bm+1,m = 5/2 for m > 0. Then,

1

m+ 1
S (m+ 1, n) = p (m,n+ 1)Fn + p (m,n)Fn+1 −

m∑
j=0

bm+1,jS (j, n) (3.4)

with initial condition S(0, n) = Fn + Fn+1 − 1.
We note that the recurrence relation (3.4) reflects the form of Ledin’s result in the polynomial

and Fibonacci product terms but his P1 and P2 polynomials do not appear explicitly.
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To develop some matrix results for the recurrence relation’s bm+1,j coefficients, we begin
with the matrix form of formulas for sums of powers of integers p (m,n) =

∑n
k=1 k

m. At first
glance, the coefficients of the sums of powers of integers formulas look uninspiring:

∑n
k=1 k

0∑n
k=1 k

1∑n
k=1 k

2∑n
k=1 k

3∑n
k=1 k

4

...


=



1 0 0 0 0

1/2 1/2 0 0 0

1/6 1/2 1/3 0 0 . . .

0 1/4 1/2 1/4 0

−1/30 0 1/3 1/2 1/5
...

. . .





n

n2

n3

n4

n5

...


. (3.5)

However, as is well known, row-sums equal one, alternating-signed row-sums are zero for rows
r ≥ 1, and the coefficients depend only on those in the first column which are the (suitably
signed) Bernoulli numbers B+

j . Further, the inverse matrix is immediately recognised as a
Pascal-type matrix ([2]):

1 0 0 0 0

1/2 1/2 0 0 0

1/6 1/2 1/3 0 0 . . .

0 1/4 1/2 1/4 0

−1/30 0 1/3 1/2 1/5
...

. . .



−1

=



1 0 0 0 0

−1 2 0 0 0

1 −3 3 0 0 . . .

−1 4 −6 4 0

1 −5 10 −10 5
...

. . .


(3.6)

so there is a more fundamental connection between sums of powers of integers and Fibonacci
numbers than is immediately evident in the formulas mentioned so far for S (m,n) =

∑n
k=1 k

mFk.
The algebraic proof of the recurrence relation for S(m,n) given in [6] involves the following

constructions to obtain the bm+1,j coefficients:

am+1,j =
1

m+ 1

(
m+ 1

j

)
B+

m+1−j (3.7)

for m > 0, with a0,0 = 1 and a0,j = 0 for all j > 0;

a∗m+1,j =

m+1∑
r=j

am+1,r

(
r

j

)
(3.8)

for all j; and
bm+1,j = a∗m+1,j (3.9)

for j 6= m, with bm+1,m = a∗m+1,m + 1.
Noting that {am+1,j} = P ∗−1 where

P ∗ =



1 0 0 0 0

0 1 0 0 0

0 −1 2 0 0 . . .

0 1 −3 3 0

0 −1 4 −6 4
...

. . .


, (3.10)
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and letting

P =



1 0 0 0 0

1 1 0 0 0

1 2 1 0 0 . . .

1 3 3 1 0

1 4 6 4 1
...

. . .


(3.11)

and

I∗ =



0 0 0 0 0

1 0 0 0 0

0 1 0 0 0 . . .

0 0 1 0 0

0 0 0 1 0
...

. . .


, (3.12)

the algebraic manipulations displayed above indicate that the recurrence relation coefficients
in (3.4) are related directly to Pascal-type matrices:

{bm+1,j} = B = P ∗−1P + I∗. (3.13)

The resulting recurrence relation coefficients also seem somewhat uninspiring:

B =



1 0 0 0 0 0

2 1 0 0 0 0

1 5/2 1/2 0 0 0 . . .

1 13/6 5/2 1/3 0 0

1 3 13/4 5/2 1/4 0

1 119/30 6 13/3 5/2 1/5
...

. . .


, (3.14)

even after noticing that row-sums are 2r−1 + 2 for rows r ≥ 1 and suitably alternating-signed
row-sums are unity. However, taking the hint given by the sums of powers of integers coefficient
matrix and its invere, we observe that:

B−1 =



1 0 0 0 0 0

−2 1 0 0 0 0

8 −5 2 0 0 0 . . .

−50 31 −15 3 0 0

416 −257 124 −30 4 0

−4322 2671 −1285 310 −50 5
...

. . .


(3.15)

in which the first two columns are the (signed) M2 and M1 sequences, respectively (see Tables
1 and 3 above), fundamental to the functions in Ledin’s form for S(m,n) in equation (2.1). It
is then clear that Ledin’s functions are encoded in the recurrence relation coefficients matrix
B in quite a straightforward manner.
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Further, just as the Pascal triangle coefficients produce the P ∗−1 matrix coefficients (includ-
ing the Bernoulli numbers) which provide formulas for

∑n
k=1 k

m, i.e.,

P ∗−1



n

n2

n3

n4

n5

...


=



∑n
k=1 k

0∑n
k=1 k

1∑n
k=1 k

2∑n
k=1 k

3∑n
k=1 k

4

...


, (3.16)

the M1 and M2 sequences underpinning the bm+1,j coefficients of the recurrence relation for
S (m,n) =

∑n
k=1 k

mFk provide the following formulas:

B



1

n

n2

n3

n4

...


=
(
P ∗−1P + I∗

)


1

n

n2

n3

n4

...


=



1∑n+1
k=1 k

0 + 1∑n+1
k=1 k

1 + n∑n+1
k=1 k

2 + n2∑n+1
k=1 k

3 + n3

...


. (3.17)

Brousseau’s Approach. In this subsection, we observe that equations (2.11) and (2.13)
derived using Brousseau’s approach can also be written in terms of matrices. Noting that

P−1 =



1 0 0 0 0

1 1 0 0 0

1 2 1 0 0 . . .

1 3 3 1 0

1 4 6 4 1
...

. . .



−1

=



1 0 0 0 0

−1 1 0 0 0

1 −2 1 0 0 . . .

−1 3 −3 1 0

1 −4 6 −4 1
...

. . .


, (3.18)

for (m+ 1)× (m+ 1) sized P−1 matrices we have

S (m,n− 1) =

m∑
t=0

(−1)t∆t (nm)Fn+2t+1 + C (m)

= F (n)P−1N (m,n)− F (1)P−1N (m, 1)

for vectors
F (n) =

(
Fn+1 −Fn+3 · · · (−1)m+1 Fn+2m+1

)
(3.19)

and
N (m,n) =

(
nm (n+ 1)m · · · (n+m)m

)T
. (3.20)

In particular, Ledin’s constant term is

C (m) = −
m∑
t=0

(−1)t
[
∆t (nm)

]
n→1

F2+2t

= F (1)P−1N (m, 1)

where
F (1) =

(
F2 −F 4 · · · (−1)m+1 F2(m+1)

)
(3.21)
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and
N (m, 1) =

(
1m 2m · · · (m+ 1)m

)T
. (3.22)

For example:

C (5) = −
(
F2 −F4 F6 −F 8 F10 −F 12

)


1 0 0 0 0 0

−1 1 0 0 0 0

1 −2 1 0 0 0

−1 3 −3 1 0 0

1 −4 6 −4 1 0

−1 5 −10 10 −5 1





15

25

35

45

55

65


= 4322

(3.23)
as expected in {M2,j} = {1, 2, 8, 50, 416, 4322, 53888, 783890, . . .}, and which displays
previously unobserved structure of the M2 sequence terms.

4. Concluding Comments

Analysing a problem from different perspectives is fundamental to mathematical research.
The application of both Brousseau’s approach and matrix methods to the analysis of S (m,n) =∑n

k=1 k
mFk provides opportunities for deeper understanding of this function. Both approaches

are clearly applicable to a wider range of related problems.
Areas of further research include:
• The OEIS notes that theM1 sequence (A000556) gives the coefficients of the expansion
of e−x/(1−ex+e−x). How is this function related to Ledin’s form and/or the recurrence
relation? N.B. e−x/

(
1− ex + e−x

)
= 1/

(
1 + x− x2

)|x→ex which involves the characteristic
polynomial of the Fibonacci sequence. Also, the OEIS does not provide a similar
function for the M2 sequence (A000557).
• What can be said more generally about

∑n
k=1 f (m, k)Fk?

• Our paper [6] contains some conjectures which are also related to the material in this
note.
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