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Abstract. The Fibonacci numbers satisfy the famous recurrence Fn = Fn−1 + Fn−2. The
theory of C-finite sequences ensures that the Fibonacci numbers whose indices are divisible by
m, namely Fmn, satisfy a similar recurrence for every positive integer m, and these recurrences
have an explicit, uniform representation. We will show that a(mn) has a uniform recurrence
over m for any C-finite sequence a(n) and use this to automatically derive some famous
summation identities.

1. Introduction

The Fibonacci numbers Fn satisfy the famous recurrence Fn = Fn−1 + Fn−2. The sequence
which takes every other Fibonacci number, F2n, satisfies the similar recurrence F2n = 3F2(n−2)−
F2(n−2). In fact, every sequence of the form Fmn satisfies such a recurrence. Here are the first
few:

Fn = Fn−1 + Fn−2

F2n = 3F2(n−1) − F2(n−2)

F3n = 4F3(n−1) + F3(n−2)

F4n = 7F4(n−1) − F4(n−2)

F5n = 11F5(n−1) + F5(n−2).

(1.1)

If we look closely at the coefficients that appear—or plug them into the OEIS [8]—there seems
to be a general recurrence:

Fmn = LmFm(n−1) + (−1)m+1Fm(n−2). (1.2)

This conjecture is right on the money, and we can prove it a dozen different ways—Binet’s
formula, induction, generatingfunctionology—but the outline is more interesting.

We began with a sequence which satisfied a nice recurrence (Fn), examined recurrences for a
family of related sequences (Fmn), then noticed that the coefficients on the recurrences satisfied
a meta pattern (equation (1.2)). This outline holds for any sequence which satisfies a linear
recurrence relation with constant coefficients. Such sequences are called C-finite sequences or
constant recursive [10, 5]. Our goal is to prove that this outline holds for C-finite sequences
and give some example applications.

The remainder of the paper is organized as follows. Section 2 gives a brief overview of
C-finite sequences, Section 3 proves that an analogue of (1.2) holds for any C-finite sequence,
Section 4 applies this to produce infinite families of summation identities, and Section 5 shows
that a similar outline holds for products of C-finite sequences.

2. The C-finite ansatz

The theory of C-finite sequences is beautifully laid out in [5] and [10]. What follows is a
brief description of the principle results. For simplicity, assume that everything we do is over
an algebraically closed field such as the complex numbers.
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Given a sequence a(n), let N be the shift operator defined by

Na(n) = a(n+ 1).

We say that a(n) is a C-finite sequence if and only if there exists a polynomial p(x) such that
p(N)a(n) = 0 for all n ≥ 0. We say that p(x) annihilates a(n). For example, x2 − x − 1
annihilates the Fibonacci sequence F (n) and x − 2 annihilates the exponential sequence 2n.
The set of all polynomials which annihilate a fixed a(n) is an ideal. The generator of this ideal
is the characteristic polynomial of a(n), and we call its degree the degree (or order) of a(n).

Every C-finite sequence has a closed-form expression as a sum of polynomials times expo-
nential sequences. More specifically,

a(n) =
m∑
k=1

fk(n)rnk ,

where r1, r2, . . . , rm are the distinct roots of the characteristic equation of a(n) and fk(n) is
a polynomial in n with degree less than or equal to the multiplicity of the root rk. We call
these formulas Binet-type formulas after Binet’s famous formula for the Fibonacci numbers.
For example, (x − 2)2 is an annihilating polynomial of any sequence a(n) which satisfies the
recurrence a(n+2) = 4a(n+1)−4a(n), and this implies a(n) = (α+βn)2n for some constants
α and β.

We can go the other way and derive an annihilating polynomial from a closed form expres-
sion. A term of the form ndrn is annihilated by (x− r)d+1, so for each exponential rn in the
closed form, look for the highest power nd which is multiplied by rn and write down (x−r)d+1.

For example, the sequence a(n) = n3n − n2

2 + 5n is annihilated by (x− 3)2(x− 1)3(x− 5).
Finally, if a(n) and b(n) are two C-finite sequences, then so are the following:

a(n)b(n), a(n)± b(n),
n∑

k=0

a(k)b(n− k).

C-finite sequences are a special subclass of holonomic sequences, sequences which satisfy
linear recurrences with polynomial coefficients [4]. Holonomic sequences satisfy very similar
properties, but do not have the readily computable closed forms which we need here.

3. Uniform recurrences

First up, we will prove the analogue of (1.2) for arbitrary C-finite sequences.

Proposition 3.1. If a(n) is a C-finite sequence of order d, then n 7→ a(nm) satisfies a
recurrence of the form

a(nm) =

d∑
k=1

ck(m)a((n− k)m), (3.1)

where ck(m) is a C-finite sequence with respect to m and has order at most
(
d
k

)
. The sequence

c1(m) always satisfies the same recurrence as a(n) itself, and cd(k) = ωk, where ω is (−1)d

times the constant coefficient of the characteristic polynomial of a(n).

The following proof is constructive given the roots of the characteristic polynomial of a(n).
In [1], there are formulas for ck(m) in terms of partial Bell polynomials without reference to
the roots. In [9], the same thing is done in terms of generalized Dickson polynomials. In [2],
explicit formulas are given for some special cases.
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Proof. The Binet-type formula for a(n) is a linear combination of terms of the form nirn where
i is a nonnegative integer and r is a root of the characteristic polynomial of a(n). Thus, the
Binet-type formula for a(nm) is a linear combination of terms of the form (nm)irnm, which
is equivalently a linear combination of terms of the form ni(rm)n. The only thing that has
changed is the exponential terms themselves, so if

d∏
k=1

(x− rk)

is the characteristic polynomial of a(n) with possibly repeated roots r1, . . . , rd, then

d∏
k=1

(x− rmk ). (3.2)

annihilates n 7→ a(nm). From the elementary theory of polynomials, the coefficients of (3.2)
are elementary symmetric functions of the roots rmk . C-finite sequences are closed under
multiplication and addition, so the coefficients of the polynomial are C-finite sequences with
respect to m.

To obtain the degree bound, recall that the coefficient on xd−i in (3.2) equals the expression
(−1)iei(r

m
1 , . . . , r

m
d ), where ei(r

m
1 , . . . , r

m
d ) is the sum of all products of i distinct rmk . Each of

these products is of the form αm for some constant α. The number of such terms is an upper
bound on the degree of the sequence with respect to m, and there are exactly

(
d
i

)
of them.

Finally, note that the coefficient on xd−1 is precisely the sum
∑

k r
m
k , which is annihilated by

the characteristic polynomial of a(n) itself, and the coefficient on xd−d is precisely the product
(r1r2 . . . rd)m. �

Example: Perrin numbers The Perrin numbers P (n) are a third-order C-finite sequence
defined by

P (0) = 0, P (1) = 0, P (2) = 2,

P (n+ 3) = P (n+ 1) + P (n).

They are sometimes called the “skipponaci” numbers. They satisfy the interesting property
that p divides P (p) for every prime p. Tracing through the above proof reveals the meta-
recurrence

P (mn) = P (m)P (m(n− 1)) + c(m)P (m(n− 2)) + P (m(n− 3)), (3.3)

where c(m) is A078712 in the OEIS.

Example: General second-order Let a(n) be annihilated by (x − r1)(x − r2) for distinct
reals r1 and r2. The proof of Proposition 3.1 shows that n 7→ a(mn) is annihilated by

(x− rm1 )(x− rm2 ) = x2 − (rm1 + rm2 )x+ (r1r2)
m.

In particular, if r1 and r2 are the golden ratio and its conjugate, respectively, then rm1 + rm2 =
Lm is the mth Lucas number, and r1r2 = −1. This recovers (1.1).

Example: Square Fibonacci The square Fibonacci numbers F 2
n are also a C-finite sequence.

Going through the steps of the above proof and consulting the OEIS reveals the following
general identity:

F 2
mn = (5F 2

m + 3(−1)m)(F 2
m(n−1) − (−1)mF 2

m(n−2)) + (−1)mF 2
m(n−3). (3.4)
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Example: Tribonacci Consider the sequence Tn defined by

T0 = 0, T1 = 0, T2 = 1,

Tn = Tn−1 + Tn−2 + Tn−3.

The family of sequences n 7→ Tnm satisfy the following recurrences:

Tn = Tn−1 + Tn−2 + Tn−3

T2n = 3T2(n−1) + T2(n−2) + T2(n−3)

T3n = 7T3(n−1) − 5T3(n−2) + T3(n−3)

T4n = 11T4(n−1) + 5T4(n−2) + T4(n−3)

T5n = 21T5(n−1) + T5(n−2) + T5(n−3)

T6n = 39T6(n−1) − 11T6(n−2) + T6(n−3).

In general,
Tnm = c1(m)T(n−1)m + c2(m)T(n−2)m + T(n−3)m,

where

c1(1) = 1, c1(2) = 3, c1(3) = 7,

c1(m) = c1(m− 1) + c1(m− 2) + c1(m− 3)

and

c2(1) = 1, c1(2) = 1, c1(3) = −5,

c2(m) = −c2(m− 1)− c2(m− 2) + c2(m− 3).

The sequences ck(m) were found via guessing. However, Proposition 3.1 establishes that
these sequences are C-finite sequences, and so proving our guess requires that we check only
finitely many terms. In this case we must check no more than double the maximum degree,
which is 6 terms. We have produced just enough examples above to constitute a proof.

4. Uniform sums

The Fibonacci numbers satisfy the famous summation identity
n∑

k=0

Fk = Fn+2 − 1. (4.1)

There are as many ways to prove this identity as there are articles devoted to evaluating
related Fibonacci sums [6, 7, 3], but the most useful method at this juncture is the following
method outlined in [5]. The annihilating polynomial of Fn can be written as

x2 − x− 1 = (x− 1)x− 1.

Applying this to Fn shows that Fn = (x − 1)Fn+1 = Fn+2 − Fn+1. If we sum over n, then
the right-hand side telescopes and we recover (4.1). In general, if p(x) annihilates a(n) and
p(1) 6= 0, then we can write p(x) = (x− 1)q(x) + p(1) for some easily-computable polynomial
q(x). Applying this to a(n) shows that a(n) = (x − 1)b(n) where b(n) = −q(x)a(n)/p(1).
Summing over n yields ∑

0≤k<n

a(k) = b(n)− b(0).

From this idea, the uniform recurrences we have derived for sequences of the form n 7→ a(mn)
and n 7→ a(ni)a(nj) will help us discover uniform summation identities.
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Here is one such identity for the Perrin numbers, using (3.3).

Proposition 4.1. The Perrin numbers P (n) satisfy∑
0≤k<n

P (mn) =
(P (n)− 3)(1− P (m)− c(m)) + P (n+ 1)(1− P (m)) + P (n+ 2)− 2

P (m) + c(m)
,

where c(m) is A078712 in the OEIS.

Using (3.4), we can quickly rediscover the following infinite family of sums for the square of
the Fibonacci numbers.

Proposition 4.2. If m is odd, then∑
0≤k<n

F 2
mk =

FmnFm(n−1)

Lm
.

Proof. Using (3.4), we obtain∑
0≤k<n

F 2
mk =

F 2
mn(7− 10F 2

m) + (F 2
m(n+1) − F

2
m)(4− 5F 2

m) + F 2
m(n+2) − F

2
2m

10F 2
m − 8

.

This is far from the most economical representation. First, the numerator here contains
(5F 2

m − 4)F 2
m − F 2

2m. It is easy to check that

(5F 2
m − 4)F 2

m − F 2
2m = −8F 2

m

(−1)m + 1

2
, (4.2)

so the expression on the left vanishes when m is odd. We are down to

F 2
mn(7− 10F 2

m) + F 2
m(n+1)(4− 5F 2

m) + F 2
m(n+2)

10F 2
m − 8

.

Applying the general recurrence (1.1) to Fm(n+2) and simplifying the result brings us to

F 2
mn(8− 10F 2

m) + F 2
m(n+1)((4− 5F 2

m) + L2
m) + 2FmnLmFm(n+1)

10F 2
m − 8

.

When m is odd, the identity 4−5F 2
m +L2

m = 0 follows from dividing (4.2) by F 2
m and recalling

that Lm = F2m/Fm. Using this and simplifying gives

Fmn(−LmFmn + Fm(n+1))

Lm
,

and applying the general recurrence (1.1) once more to Fm(n+1) gives us the final answer
FmnFm(n−1)/Lm. �

5. Uniform products

The proof of Proposition 3.1 relied on little more than the identity rmn = (rm)n and some
structural facts about C-finite sequences. Unsurprisingly, these ideas apply to other settings.
The below proposition shows how to apply the idea to prove that sequences of the form
n 7→ a(ni)a(nj) also satisfy meta C-finite recurrences.
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Proposition 5.1. If a(n) is a C-finite sequence of degree d whose characteristic polynomial
has m distinct roots, then Pi,j(n) = a(ni)a(nj) satisfies a recurrence of the form

Pi,j(n) =

m(2d−m)∑
k=1

ck(i, j)Pi,j(n− k),

where each ck(i, j) is a C-finite sequence with respect to i and j and ck(i, j) = ck(j, i). The

sequence ck(i, j) has order (with respect to i or j) no more than
(
d
k

)
.

Proof. Write the characteristic polynomial of a(n) as
∏m

k=1(x−rk)dk+1 where the rk are distinct
and d1 + d2 + · · ·+ dm = d−m. Then,

a(n) =
m∑
k=1

pk(n)rnk ,

where pk is a polynomial in n of degree dk or less. Therefore

Pi,j(n) =
∑

1≤k,v≤m

pk(in)pv(jn)(rikr
j
v)n.

Immediately, we see that Pi,j(n) is annihilated by∏
1≤k,v≤m

(x− rikrjv)dk+dv+1, (5.1)

a polynomial of degree
∑

k,v(dk + dv + 1) = m(2d −m). The coefficients of this polynomial

are elementary symmetric polynomials in the variables {rikr
j
v}1≤k,v≤d, and therefore C-finite

sequences with respect to i and j by the C-finite closure properties. The roots rikr
j
v are

symmetric in i and j, so the coefficient sequences are as well.
The coefficient on xd−k is essentially the sum of all products of k distinct elements from

{rikr
j
v}1≤k,v≤d. As a sequence in i the rjv factors are irrelevant: The coefficient will be annihi-

lated by the characteristic polynomial for the sum of all products of k distinct elements from
{rik}1≤k≤d. Each term of this latter sum is of the form αi for some constant α, and there

are no more than
(
d
k

)
distinct values of α. Therefore ck(i, j) has order no more than

(
d
k

)
with

respect to i (and also j). �

The previous proof can be slightly modified to produce a stronger statement. Namely, if we
split the product (5.1) into diagonal and off-diagonal terms, we get the following corollary.

Corollary 5.2. Let a(n) be a C-finite sequence of degree d whose characteristic polynomial has
m distinct roots. Then n 7→ a(ni)a(nj) is annihilated by a polynomial Ci,j(x) which factors as

Ci,j(x) = Li+j(x)Ri,j(x), (5.2)

where degLi+j = 2d − m and degRi,j = (m − 1)(2d − m). The coefficients of Li+j(x) are
C-finite sequences in i + j and the coefficients of Ri,j(x) are C-finite sequences which are
symmetric in i and j.

There is one case of this corollary worth highlighting. Now that we know these annihilating
polynomials with C-finite coefficients exist, we could find them by computing enough examples
and guessing a pattern. However, if the degrees of Li+j(x) and Ri,j(x) are the same, then it is
not always clear which factor is L and which factor is R in a given example. This happens when
2d −m = (m − 1)(2d −m). Since m ≤ d, the interesting solution is m = 2. Thus sequences
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with exactly two roots in their characteristic polynomial should be handled “manually.” We
will show one example.

Example: Second-order annihilators Let a(n) be a C-finite sequence annihilated by the
quadratic (x− r1)(x− r2) where r1 6= r2. Then n 7→ a(ni)a(nj) is annihilated by

(x2 − L(i+ j)x+ (r1r2)
i+j)(x2 − (r1r2)

jL(i− j)x+ (r1r2)
i+j)

where L(n) = rn1 + rn2 . If a(n) = F (n) equals the nth Fibonacci number, then L(n) = L(n) is
the nth Lucas number, r1r2 = −1, and we obtain the annihilator

(x2 − L(i+ j)x+ (−1)i+j)(x2 − (−1)jL(i− j)x+ (−1)i+j).

6. Computer demo

This article is joined by a corresponding Maple package MetaCfinite, obtainable from
GitHub at https://github.com/rwbogl/MetaCfinite. With MetaCfinite, nearly all the
propositions described in this article can be explored and checked empirically.

Guessing uniform recurrences Suppose that we want to discover (1.1) and the corre-
sponding general pattern. The following Maple commands compute the five recurrences from
(1.1):

Fib := [[0, 1], [1, 1]:

mSect(Fib, 1, 0); # [[0, 1], [1, 1]]

mSect(Fib, 2, 0); # [[0, 1], [3, -1]]

mSect(Fib, 3, 0); # [[0, 2], [4, 1]]

mSect(Fib, 4, 0); # [[0, 3], [7, -1]]

mSect(Fib, 5, 0); # [[0, 5], [11, 1]]

We are trying to guess the pattern followed by 1, 3, 4, 7, 11, and 1,−1, 1,−1, 1. The following
command does this for us:

MetaMSect(Fib, 0); # [[[1, 3], [1, 1]], [[1], [-1]]]

This tells us that, for example, the coefficient on Fm(n−1) is a sequence Lm which begins
L1 = 1, L2 = 3, and satisfies Lm = Lm−1 + Lm−2. These are the Lucas numbers.

Uniform summation identities The procedure polysum(a, n, p, x computes an ex-
pression for

∑
0≤k<n a(k) where a(n) is a C-finite sequence with characteristic polynomial p(x).

For example, the following command derives the famous identity (4.1):

polysum(F, n, x^2 - x - 1, x); # F(n + 1) - F(1).

This is most powerful when joined with uniform recurrences found by MetaMSect. For instance,
the sequence n 7→ F (mn) has characteristic polynomial pm(x) = x2 −L(m)x− (−1)m+1. The
following commands derive a summation identity for

∑
0≤k<n F (mk):

polysum(Fm, n, x^2 - L(m) * x - (-1)^(m + 1), x);

(Fm(n) - Fm(0)) (1 - L(m)) + Fm(n + 1) - Fm(1)

- ----------------------------------------------

m

1 - L(m) + (-1)

That is, we have automatically derived the famous identity∑
0≤k<n

F (mk) =
F (mn)(1− L(m)) + F (m(n+ 1))− F (m)

L(m)− 1− (−1)m
.
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7. Conclusion

We have used the theory of C-finite sequences to establish meta-facts about the recurrences
C-finite sequences satisfy. Namely, we have shown that the recurrences satisfied by n 7→ a(nm)
and n 7→ a(ni)a(nj) are uniform in a C-finite sense. This allowed us to state uniform families
of summation identities for some C-finite sequences.

The summation identities our methods derive are automatic and uniform, but we do not
claim that they are the “best possible.” For instance, the first expression obtained for∑n−1

k=0 F
2
mk in Proposition 4.2 is quite cumbersome compared to the final answer:

F 2
mn(7− 10F 2

m) + (F 2
m(n+1) − F

2
m)(4− 5F 2

m) + F 2
m(n+2) − F

2
2m

10F 2
m − 8

=
FmnFm(n−1)

Lm
.

It still takes some (semi-automatic) sweat to discover this reduction. Can we automatically
discover and prove such “complex = simple” identities? And might this apply to more complex
sums, such as

∑n−1
k=0 F

5
mk? The answer is likely yes—and perhaps a C-finite simplification

algorithm already exists—but we leave this as an open problem.
Finally, the author would like to acknowledge Doron Zeilberger for bringing these problems

to his attention and providing encouragement.
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