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Abstract. In this paper, the Narayana sequence modulo m is studied. The paper outlines
the definition of Narayana numbers and some of their combinatorial links with Eulerian,
Catalan and Delannoy numbers and other special functions. From the definition, the Narayana
orbit of a 2-generator group for a generating pair (x, y) ∈ G is defined, so that the lengths of
the period of the Narayana orbit can be examined. These yield in turn the Narayana lengths
of the polyhedral group and the binary polyhedral group for the generating pair (x, y) and
associated properties.

1. Introduction

The Narayana numbers and their properties were studied by Özkan, Ramirez, Petersen et al.
[18, 19, 20, 21]. Petersen [20] especially placed them in the Euler-Macmahon-Carlitz/Riordan
combinatorial spectrum.

The Narayana sequence is defined by the third order linear, homogeneous recurrence relation

Nn+3= Nn+2 +Nn (1.1)

with the initial values N0 = 0, N1 = 1 and N2 = 1. That is, the Narayana sequence is
{0,1,1,1,2,3,4,6,9,13,19,28,41,60, . . . } A078012. We can also obtain Narayana numbers with a
matrix just like Fibonacci numbers as follows.

Tn =

 Nn+1 Nn−1 Nn

Nn Nn−2 Nn−1

Nn−1 Nn−3 Nn−2

 (1.2)

where T =

 1 0 0
0 1 0
0 0 1

. [26]

The Narayana numbers Nn,k were discovered by Tadepalli Venkata Narayana, a Canadian
mathematician.
Nn,k are usually expressed by the Narayana Triangle which summarizes their symmetry

Nn,k = Nn,n−k+1, as in the Pascal triangle. We know that

Nn,k =
1

n

(n
k

)( n

k − 1

)
=

1

k + 1

(n
k

)(n− 1

k

)
(1.3)

which can also be expressed as

Nn,k =

(
n− 1

k

)(
n+ 1

k + 1

)
−
(n
k

)( n

k + 1

)
(1.4)

which has echoes of the Catalan result

Cn =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(

2n

n− 1

)
. (1.5)
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We give the first few of them in Table 1.

n\k 0 1 2 3 4 5 6 7 8 9
1 1
2 1 1
3 1 3 1
4 1 6 6 1
5 1 10 20 10 1
6 1 15 50 50 15 1
7 1 21 105 175 105 21 1
8 1 28 196 490 490 196 28 1
9 1 36 336 1176 1764 1176 336 36 1
10 1 45 540 2520 5292 5292 2520 540 45 1

TABLE 1. Some of the Narayana numbers

From Table 1, we see that Nn,1 is given as sequences A000217 and N10,k is a part of sequence
A001263 in the On-Line Encyclopedia of Integer Sequences [25]. Also, the sums along the
leading diagonals yield {1, 1, 2, 4, 8, 17, 37, 82, 185, . . . ], the generalized Catalan sequence,
A004148 [25]. Many of the relevant number theory features were elaborated by Carlitz and
Riordan [4] and Deveci and Shannon [10].

The first study on Fibonacci sequences in groups started with Wall [28]. He investigated
the ordinary Fibonacci sequences in cyclic groups. The concept was later extended to some
special linear recurrence sequences by some authors [6, 7, 9, 11, 15, 16, 17]. The theory was

expanded to 3-step Fibonacci sequence by Özkan, Aydın and Dikici [14] and extended to k -step
Fibonacci sequences by Lü and Wang [13].

Simple groups of order less than a million were considered by Campbell, Doostie and Robert-
son [2] and the binary polyhedral and binary polyhedral groups were studied by Taş and
Karaduman [27] and C.M. and P.P Campbell [3]. They defined the Fibonacci length of the
basic Fibonacci orbit in a 2-generator group. Knox [12] expanded the theory to k-nacci se-
quences in a finite group. Deveci and Karaduman defined the basic k -nacci sequences and
the basic periods of these sequences in finite groups [8] and also extended the concept to Pell,
Pell-Padovan, Jacobsthal-Padovan sequences in finite groups [5].

We next extend the concept to the Narayana sequences. In Section 2, it is explained with
some theorems and examples that the Narayana sequence forms a periodic sequence according
to modm. In Section 3, for a generating pair (x, y) ∈ G, we define the Narayana orbit. In
Section 4, we have obtained the Narayana lengths of the polyhedral and the binary polyhedral
groups with specific examples.

2. The Narayana Sequences

A sequence is simply periodic with period k if the first different k elements in the sequence
form a repeating subsequence. For example, x1, x2, x3, x4, x5, x1, x2, x3, x4, x5 . . . . is simply

periodic with period 5. Let us denote Ni(modm) with
{
N

(m)
i

}
. That is,{

N
(m)
i

}
=
{
N

(m)
0 , N

(m)
1 , N

(m)
2 , . . . , N (m)

n , . . .
}
.

which has the same recurrence relation as in (1.1). These recurrences belong to a family of
third order lacunary-type Padovan, Perrin and Plastic sequences which have been extensively
explored by Anderson, Horadam and Shannon [1, 22, 23, 24].
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Theorem 2.1.
{
N

(m)
n

}
forms a simply periodic sequence.

Proof. Since there are only a finite number m3 of possible term triplets, the sequence repeats,
and repeating the triple results in iteration of all subsequent terms.

From definition of the Narayana sequence, we have

Nn+2= Nn+3 −Nn

so, if

N
(m)
i+2 = N

(m)
j+2 ,

N
(m)
i+1 = N

(m)
j+1 ,

N
(m)
i = N

(m)
j

then
N

(m)
i−j+2 = N

(m)
2 , N

(m)
i−j+1 = N

(m)
1 and N

(m)
i−j = N

(m)
0 ,

which implies that the sequence
{
N

(m)
n

}
is simply periodic, as required. �

Now, we let Per(N (m)) denote the smallest period of the sequence
{
N

(m)
n

}
, the period of

the Narayana sequence modulo m. Let pi be distinct primes. If m =
∏t
i=1 pi

ei(t ≥ 1 ) then we
get

Per(N (m)) = lcm[Per(N (pi
ei ))],

the least common multiple of the Per(N (pi
ei )).

Example 2.2.
{
N

(3)
n

}
= {0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, 1, . . . } =⇒ Per(N (3)) = 8.

As a sequence of the Theorem 2.1, we give the following Conjecture.

Conjecture 2.3. For m > 1, we have{
N

(m)

Per(N(m)) −7
, N

(m)

Per(N(m)) −6
, . . . , N

(m)

Per(N(m))−1
, N

(m)

Per(N(m))
, N

(m)

Per(N(m))+1
, N

(m)

Per(N(m))+2

}
= {m− 2, 1, 1,m− 1, . . . , 0, 1, 1} .

Example 2.4. For
{
N

(3)
n

}
= {0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, . . . } =⇒ Per(N (3)) = 8.{

N
(3)

Per(N(3)) −7
, N

(3)

Per(N(3)) −6
, . . . , N

(3)

Per(N(3))−1
, N

(3)

Per(N(3))
, N

(3)

Per(N(3))+1
, N

(3)

Per(N(3))+2

}
{
N

(3)
8 −7, N

(3)
8 −6, . . . , N

(3)
8−1, N

(3)
8 , N

(3)
8+1, N

(3)
8+2

}
= {1, 1, 1, 2, . . . , 0, 0, 1, 1}

= {m− 2, 1, 1,m− 1, . . . , 0, 1, 1}.

For the matrix A = [aij ](k+1)×(k+1) with aij integers, A(modm) means that all entries of A

are reduced modulom, that is, A (modm) = (aij (modm)) . Let 〈N〉pα =
{
T i (mod pα) | i ≥ 0

}
be a cyclic group and

∣∣∣〈N〉pα∣∣∣ denote the order of 〈N〉pα . From 1.2, we have that Per(N (pα)) =∣∣∣〈N〉pα∣∣∣.
Theorem 2.5. Let t be the positive integer such that Per(N (p)) = Per(N (pt)). Then we have

Per(N (pα)) = pα−tPer(N (p)), α ≥ t. In particular, if Per(N (p)) 6= Per(N (p2)) then we have

Per(N (pα)) = pα−1Per(N (p)), α > 1.
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Proof. Let q be a positive integer. Since TPer(N(pq+1)) ≡ I(mod pq+1) and TPer(N(pq+1)) ≡
I(mod pq), we get that Per(N (pq)) divides Per(N(pq+1)) where I is an identity matrix. On the
other hand, we know

TPer(N(pq)) = I + (aij
(q)pq).

So, we have

TPer(N(pq))p = (I + aij
(q)pq)

p
=

p∑
i=0

(p
i

)
(aij

(q)pq)
i ≡ I(mod pq+1)

which yields the result that Per(N (pq+1) divides Per(N (pq)p. Therefore, we get

Per(N(pq+1)) = Per(N (pq)) or Per(N(pq+1) = Per(N (pq)p)

and Per(N(pq+1) = Per(N (pq)p) if and only if there is an aij
(q) which is not divisible by p.

Since Per(N(pt)) 6= Per(N(pt+1)), there is an aij
(t+1) which is not divisible by p. Thus, we get

Per(N(pt+1)) 6= Per(N(pt+2)). The proof is finished by induction on t. �

Let us explain this theorem with an example.

Example 2.6. For p = 3 and q = 1, TPer(N(9)) ≡ T 24 ≡ I(mod 9), so that,

T 24 =

 N25 N23 N24

N24 N22 N23

N23 N21 N22

 =

 5896 2745 4023
4023 1873 2745
2745 1278 1873


mod9

=

 1 0 0
0 1 0
0 0 1

 = I,

T 3Per(N(3))=

 1 0 0
0 1 0
0 0 1

+ 3

 1965 915 1341
1341 624 915
915 426 624

3

=

 1 0 0
0 1 0
0 0 1

 (mod 32).

In this example, for t = 1 and α = 2, we have

Per
(
N (pα)

)
= pα−tPer

(
N (p)

)
= Per

(
N(32)

)
= 31Per

(
N (3)

)
where Per

(
N (3)

)
= 8 and Per

(
N(32)

)
= 24 from Example 2.2. Also, in this example for

Per
(
N (p)

)
6= Per

(
N(p2)

)
, Per(N (pα)) = pα−1Per(N (p)) is provided.

Theorem 2.7. If m =
∏t
i=1 pi

ei(t ≥ 1 ) where the pi are distinct primes, then Per(N (m)) =

lcm[Per(N (pi
ei ))], the least common multiple of the Per(N (pi

ei )).

Proof. The statement Per(N (pi
ei )) is the length of the period of

{
N

(pi
ei )

n

}
which implies

that the sequence
{
N

(pi
ei )

n

}
repeats only after blocks of length uPer(N (pi

ei )), u ∈ N and the

statement Per(N (m)) is the length of the period
{
N

(m)
n

}
which implies that

{
N

(pi
ei )

n

}
repeats

after Per(N (m))for all values i.

Thus, Per(N (m)) is of the form u.Per(N (pi
ei )) for all values of i, and any such number gives

a period of
{
N

(m)
n

}
. Then we get that Per(N (m)) = lcm

[
Per(N (pi

ei ))
]
, as required. �
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3. The Narayana length of generating pairs in groups

Let G be a group and x, y ∈ G. If every element of G can be written as a word

xu1yu2xu3yu4 . . . xum−1yum

where 1 ≤ i ≤ m, ui ∈ Z, then we say that x and y generate G,

G = 〈x0 = x, x1 = y : xi+3 = xi+2.xi, i ≥ 0〉 ,
and that G is a 2-generator group. Let G be a finite 2-generator group and X be the subset
of G × G such that (x, y) ∈ X if and only if G is generated by x and y. We call (x, y) a
generating pair for G.

Definition 3.1. For a generating pair (x, y) ∈ G, we define the Narayana orbit as

Nx,y,y (G) = {xi}
with x0 = x, x1 = y, x2 = y, xi+3 = xi+2.xi, i ≥ 0.

Theorem 3.2. A Narayana orbit of a finite group is simply periodic.

Proof. Let n be the order of G. Since there are n3 distinct 3-tuples of elements of G, at least
one of the 3-tuples appears twice in a Narayana orbit of G. Thus, the subsequence follows the
3-tuples. Because of the repetitions, the Narayana orbit is periodic.

Since the Narayana orbit is periodic, there exist natural numbers i and j, with i > j, such
that

xi+1 = xj+1, xi+2 = xj+2, xi+3= xj+3.

By the definition of the Narayana orbit, we know that

xi = (xi+2)
−1.xi+3 and xj = (xj+2)

−1.xj+3 .

Hence, xi = xj and it then follows that

xi−j = xj−j = x0, xi−j+1 = xj−j+1 = x1, xi−j+2 = xj−j+2 = x2.

Thus, the Narayana orbit is simply periodic. �

We denote the period of the Narayana orbit Nx,y,y (G) by LNx,y,y (G) and we call the
Narayana length of G with respect to the generating pair (x, y).

Theorem 3.3. The Narayana length of Zn×Zm, where Zn = 〈x〉 and Zm = 〈y〉, equals

lcm[Per(N (n)),Per(N (m))].

Proof. We know that Zn×Zm have the presentation

〈x, y : xn = ym = e, xy = yx〉 .
The Narayana orbit is

x0 = x, x1 = y, x2 = y, x3 = xy, x4 = xy2, x5 = xy3,

x6 = x2y4, x7 = x3y6 x8 = x4y9, x9 = x6y13, . . .

If we get xi = x, xi+1 = y, xi+2 = y then the proof is finished. Examining this statement in
more detail, it yields

xNi−2yNi = x = x0, xNi−1yNi+1 = y = x1, xNiyNi+2 = y = x2,

and the least non-trivial integer satisfying the above conditions occurs when

i = lcm[Per(N (n)),Per(N (m))].

�
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4. Applications

Definition 4.1. The polyhedral group (`,m, n ), for `,m, n > 1, is defined by the presentation〈
x, y, z : x` = ym = zn = xyz = e

〉
or

〈
x, y : x` = ym = (xy)n = e

〉
.

The polyhedral group (`,m, n ) is finite if and only if the number

k = `mn

(
1

`
+

1

m
+

1

n
− 1

)
= mn+ n`+ `m− `mn

is positive. Its order is 2`mn
k .

Definition 4.2. The binary polyhedral group 〈`,m, n〉, for `,m, n > 1, is defined by the
representation〈

x, y, z : x` = ym = zn = xyz
〉
, or

〈
x, y : x` = ym = (xy)n

〉
.

The binary polyhedral group 〈`,m, n〉 is finite if and only if the number

k = `mn

(
1

`
+

1

m
+

1

n
− 1

)
= mn+ n`+ `m− `mn

is positive. Its order is 4`mn
k .

Now we obtain the Narayana lengths of the polyhedral groups (2, 2, 2), (n, 2, 2), (2, n, 2),
(2, 2, n) and the binary polyhedral groups 〈2, 2, 2〉, 〈n, 2, 2〉, 〈2, n, 2〉, 〈2, 2, n〉 for the generating
pair (x, y).

Theorem 4.3. The Narayana length of the polyhedral group (2, 2, 2) is 7.

Proof. From Theorem 3.3, we can see that LNx,y,y ((2, 2, 2)) = 7. Since (2, 2, 2) ∼= Z2×Z2, we
have

x0 = x, x1 = y, x2 = y, x3 = xy, x4 = x, x5 = xy, x6 = e, x7 = x, x8 = y, . . .

and LNx,y,y ((2, 2, 2)) = 7. �

Theorem 4.4. The Narayana length of the polyhedral group (2, n, 2) is as follows:

LNx,y,y ((2, n, 2)) =


7n
2 , n ≡ 0 (mod 4),

7n n ≡ 2 (mod 4), n > 2,

14n, otherwise.

Proof. If 〈x, y : x2 = yn = (xy)2 = e〉, |x| = 2, then |y| = n and |xy| = 2. The Narayana
orbit is

x, y, y, xy, x, yx, y−2, xy−2, y−1, y−3, xy−5, xy−4, xy−1, y4, x, y, y5, xy5, xy4, xy−1,

y−6, xy−2, y−1, y−7, xy−9, x−1, xy−1, y8, x, y, y9, xy9, . . .

Thus, the Narayana orbit becomes:

x0 = x, x1 = y, x2 = y, . . .

x7 = xy−2, x8 = y−1, x9 = y−3, . . .

x14 = x, x15 = y, x16 = y5, . . .

x28=14i = x, x29=14i+1 = y, x30=14i+2 = y9=4i+1, . . .

x42 = x, x43 = y, x44 = y13, . . .
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so, we get 4i = un for u ∈ N and i ∈ N. If n ≡ 0 (mod 4), there are two subcases:
First case: If n

2 ≡ 0 (mod 4), then i = n
4 . So, we get LNx,y,y ((2, n, 2)) = 7n

2 .

n = 8k, 4i = u8k =⇒ i = 2uk and k = i
2u where n = 4i

u and i = un
4 . Since the smallest

number u satisfying the equation is 2, we get i = n
2 . From Theorem 3.3, it is easy to see that

LNx,y,y ((2, n, 2)) = 7n
2 , n ≡ 0 (mod 4).

Second case: If n2 ≡ 2 (mod 4), then i = n
4 . So, we get LNx,y,y ((2, n, 2)) = 7n

2 . Similarly, from

Theorem 3.3, it is easy to see that LNx,y,y ((2, n, 2)) = 7n
2 , n ≡ 0 (mod 4). If n ≡ 2 (mod 4)

then i = n
2 . So, fromTheorem 3.3, it is easy to see that LNx,y,y ((2, n, 2)) = 7n. If n is odd,

then i = n. So, from Theorem 3.3, it is easy to see that LNx,y,y ((2, n, 2)) = 14n. �

Theorem 4.5. Let G be any one of the polyhedral groups (n, 2, 2) and (2, 2, n). Then

LNx,y,y (G) =


7n
2 , n ≡ 0 (mod 4),

7n n ≡ 2 (mod 4), n > 2,

14n, otherwise.

Proof. Firstly, let us consider the polyhedral group (n, 2, 2). We know 〈x, y : xn = y2 =

(xy)2 = e〉, |x| = n, |y| = 2 and |xy| = 2 . The Narayana orbit is

x, y, y, xy, x−1, xy, e, x−1, x2y, x2y, xy, x, xy, e, x, y, y, xy, x−1, xy, e, . . .

for polyhedral groups (n, 2, 2). So, LNx,y,y ((n, 2, 2)) = 14.
Secondly, let us consider the polyhedral group (2, 2, n). Since 〈x, y : x2 = y2 = (xy)n = e〉,

|x| = 2, |y| = 2 and |xy| = n, the Narayana orbit is

x, y, y, xy, yxy, xy, (xy)2, y(xy)3, y(xy)2, y, . . . .

So, we have

x0 = x, x1 = y, x2 = y, . . .

x7 = y(xy)3, x8 = (xy)3x, x9 = y, . . .

x14 = (xy)4x, x15 = (xy)3x, x16 = y, . . .

x28=14i = (xy)8=4ix, x29=14i+1 = (xy)7=4i−1x, x30=14i+2 = y, . . .

x42 = (xy)12x, x43 = (xy)11x, x44 = y, . . .

If n ≡ 0 (mod 4), LNx,y,y ((2, 2, n)) = 7n
2 .

If n ≡ 2 (mod 4), LNx,y,y ((2, 2, n)) = 7n.
If n is odd, LNx,y,y ((2, 2, n)) = 14n.

The proof is like that of Theorem 4.2. �

The Theorem 4.4 and 4.5 are supported by the following examples to make it more under-
standable.

Example 4.6. For n = 4, the Narayana lenght of polyhedral groups (4, 2, 2) is 14.〈
x, y : x4 = y2 = (xy)2 = e

〉
, |x| = 4, |y| = 2, |xy| = 2.

So, the Narayana sequence in the (4, 2, 2) is

x, y, y, xy, x3, xy, e, x3, x2y, x2y, xy, x, xy, e, x, y, xy, . . .

and the Narayana length of the polyhedral groups (4, 2, 2) is 14.

Theorem 4.7. The Narayana length of the binary polyhedral group 〈2, 2, 2〉 is 14.
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Proof. Since 〈x, y : x2 = y2 = (xy)2〉, |x| = 4, the Narayana orbit is

x, y, y, xy, x, yx, e, x, y3, y3, xy3, x, y3x, e, x, y, y, . . . .

So, we get LNx,y,y ((2, 2, 2)) = 14. �

Theorem 4.8. For n ≥ 1, the Narayana length of the binary polyhedral group 〈2, n, 2〉 is as
follows:

LNx,y,y =


7n
2 , n ≡ 0 (mod 4),

7n n ≡ 2 (mod 4),

14n, otherwise.

Proof. Since 〈x, y : x2 = yn = (xy)2〉, |x| = 4, |y| = 2n, |xy| = 4, the Narayana orbit is

x, y, y, xy, x, yx, x2y−2, x3y−2, y−1, x2y−3, xy−1, x, x3y3, y4, xy4, y, y5, xy9, xy8,

xy3, x2y−6, x3y−14, y−17, x2y−23, xy−9, xy8, x3y31, . . .

If n ≡ 0 (mod 4), LNx,y,y (〈2, n, 2〉) = 7n
2 .

If n ≡ 2 (mod 4), LNx,y,y (〈2, n, 2〉) = 7n.
If n is odd, LNx,y,y (〈2, n, 2〉) = 14n.

The proof is like that of Theorem 4.4 and 4.5. �

Theorem 4.9. Let Gn be any one of the binary polyhedral groups 〈n, 2, 2〉 and 〈2, 2, n〉. Then
we get

LNx,y,y =


7n
2 , n ≡ 0 (mod 4),

7n n ≡ 2 (mod 4), n ≥ 1,

14n, otherwise.

Proof. Firstly, let us consider the binary polyhedral group 〈n, 2, 2〉 . The group is defined by

〈x, y : xn = y2 = (xy)2〉, |x| = 2n, |y| = 4, |xy| = 4. So,
If n ≡ 0 (mod 4), LNx,y,y (〈n, 2, 2〉) = 7n

2 .
If n ≡ 2 (mod 4), LNx,y,y (〈n, 2, 2〉) = 7n.
If n is odd, LNx,y,y (〈n, 2, 2〉) = 14n. �

Example: For n = 2, the Narayana length of the binary polyhedral group 〈2, 2, 2〉 is 14. Since

〈x, y : x2 = y2 = (xy)2〉, |x| = 4, |y| = 4, |xy| = 4, the Narayana sequence in the 〈2, 2, 2〉 is

x, y, y, xy, x, yx, e, x, y3, y3, xy3, x, y3x, e, x, y, y, xy, . . .

For n = 4, the Narayana length of the binary polyhedral group 〈4, 2, 2〉 is 14. Since 〈x, y :

x4 = y2 = (xy)2〉, |x| = 8, |y| = 4, |xy| = 4, the Narayana sequence in the 〈4, 2, 2〉 is

x, y, y, xy, x3, yx3, e, x3, yx6, yx6, yx3, yx3y, yx7, e, x, y, y, xy, . . . .

For n = 1, the Narayana length of the binary polyhedral group 〈1, 2, 2〉 is 14.
We next note that in the group defined by〈

x, y : x = y2 = (xy)2
〉
, |x| = 2, |y| = 4, |xy| = 4.

So, the Narayana sequence in the 〈1, 2, 2〉 is

x, y, y, xy, e, y, e, e, y, y, y, x, yx, e, x, y, y, xy, . . .

Secondly, let us consider the binary polyhedral group 〈2, 2, n〉. We first note that in the group
defined by 〈

x, y : x2 = y2 = (xy)n
〉
, |x| = 4, |y| = 4, |xy| = 2n.
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If n ≡ 0 (mod 4), LNx,y,y (〈2, 2, n〉) = 7n.
If n ≡ 2 (mod 4), LNx,y,y (〈2, 2, n〉) = 7n.
If n is odd, LNx,y,y (〈2, 2, n〉) = 14n.

The proofs are like those of Theorem 4.4 and 4.5.

Example 4.10. For n = 3, the Narayana length of the binary polyhedral group 〈2, 2, 3〉 is 42.
We first note that in the group defined by〈

x, y : x2 = y2 = (xy)3
〉
, |x| = 4, |y| = 4, |xy| = 6.

So, the Narayana sequence in the 〈2, 2, 3〉 is

x, y, y, xy, yxy, (xy)4, (xy)5, y, (xy)4y, (xy)3y, e, (xy)4y, yx3, yx3, (xy)4x, x, y, (xy)5,

x(xy)5, (xy)4, (xy)3, x(xy)2, (xy)2x, (xy)5x, y3x, x, (xy)2,

x3y, y, (xy)2y, y, y2, xyx, xy3, xy, x, (yx)2x, yx2, (yx)2, x, yx3, e, x, y, y, xy, yxy, . . .

5. CONCLUSION

We have recalled the essential features of the Narayana sequence and the main properties so
that we could examine the Narayana sequences modulo m. So, we have defined the Narayana
orbits of 2-generator finite groups. Finally, we have obtained the Narayana lengths of the
polyhedral and the binary polyhedral groups with specific examples.
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[9] Ö. Deveci and E. Karaduman, The Pell sequences in finite groups, Util. Math., 96 (2015), 263–276.
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[18] E. Özkan and B. Kuloğlu, On the new Narayana polynomials, the Gauss Narayana numbers and their
polynomials, Asian-Eur. J. Math., 14 (2021), no. 6, Paper No. 2150100, 16 pp.
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