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Abstract. In 2021, Guyer and Mbirika gave two equivalent formulas that computed the
greatest common divisor (GCD) of all sums of k consecutive terms in the generalized Fibonacci
sequence (Gn)n≥0 given by the recurrence Gn = Gn−1+Gn−2 for all n ≥ 2 with integral initial
conditions G0 and G1. In this current paper, we extend their results to the GCD of all sums of
k consecutive squares of these numbers. Denoting these GCD values by the symbol G2G0,G1

(k),

we prove G2G0,G1
(k) = gcd

(
GkGk+1 −G0G1, G

2
k+1 −G2

1, G
2
k+2 −G2

2

)
. Moreover, we provide

very tantalizing closed forms in the specific settings of the Fibonacci, Lucas, and generalized
Fibonacci numbers. We close with a number of open questions for further research.

1. Introduction and motivation

Appearing in the literature as early as 1901 by Tagiuri [9], the generalized Fibonacci numbers
(or so-called Gibonacci numbers1) are defined by the recurrence

Gn = Gn−1 +Gn−2 for all n ≥ 2

with initial conditions G0, G1 ∈ Z. In 1963, a problem was proposed by I. D. Ruggles in the
inaugural issue of the Fibonacci Quarterly on a closed form for the sum of any twenty consec-
utive Fibonacci numbers [7]. Since then, there has been numerous papers exploring the sums
of consecutive Fibonacci or Lucas numbers [5, 10, 11, 3, 2, 8]. This current paper continues
this line of research, extending it to the greatest common divisor (GCD) of sums of certain
powers of Gibonacci numbers. This current work extends earlier work of Guyer and Mbirika
who explored the GCD of the sums of k consecutive Gibonacci numbers, and consequently k
consecutive Fibonacci and Lucas numbers [4]. More precisely, given k ∈ N they found the ex-

act value of the GCD of an infinite number of finite sums
∑k

i=1Gi ,
∑k+1

i=2 Gi ,
∑k+2

i=3 Gi , . . .

thereby computing the GCD of the terms in the sequence (
∑k

i=1Gn+i)n≥0. For brevity, they
used the symbols F(k), L(k), and GG0,G1(k), respectively, to denote the three values

gcd


(

k∑
i=1

Fn+i

)
n≥0

 , gcd


(

k∑
i=1

Ln+i

)
n≥0

 , and gcd


(

k∑
i=1

Gn+i

)
n≥0

 ,

where (Fn)n≥0, (Ln)n≥0, and (Gn)n≥0 denote the Fibonacci, Lucas, and Gibonacci sequences.
A main result of Guyer and Mbirika was the formula GG0,G1(k) = gcd(Gk+1−G1, Gk+2−G2) [4,
Theorem 15], or an equivalent formula using generalized Pisano periods [4, Theorem 25]. Using
either formula yields the values of F(k), L(k), and GG0,G1(k) in Table 1.

1Thomas Koshy attributes Art Benjamin and Jennifer Quinn for coining this term “Gibonacci” in their 2003
book Proofs that Really Count: The Art of Combinatorial Proof [1].
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k F(k) L(k) GG0,G1(k)

k ≡ 0, 4, 8 (mod 12) Fk/2 5Fk/2 F a
k/2 or 5F b

k/2

k ≡ 2, 6, 10 (mod 12) Lk/2 Lk/2 Lk/2

k ≡ 3, 9 (mod 12) 2 2 2 c

k ≡ 1, 5, 7, 11 (mod 12) 1 1 1 c

Table 1. Closed forms for the values F(k), L(k), and GG0,G1(k)

a This value holds if and only if gcd(G0 + G2, G1 + G3) = 1.
b This value holds if and only if gcd(G0 + G2, G1 + G3) 6= 1.

c These values hold if G2
1 −G0G1 −G2

0 = ±1.

In this current paper, we explore the GCD of sums of squares of k consecutive generalized
Fibonacci numbers (and in particular, the Fibonacci and Lucas numbers). For brevity, we use
the symbols F2(k), L2(k), and G2G0,G1

(k), respectively, to denote the three values

gcd


(

k∑
i=1

F 2
n+i

)
n≥0

 , gcd


(

k∑
i=1

L2
n+i

)
n≥0

 , and gcd


(

k∑
i=1

G2
n+i

)
n≥0

 .

This current paper arose when second author Spilker offered a proof of a conjecture, stating
F2(k) = Fk when k is even, given in the paper of Guyer and Mbirika [4, Question 54], who
wrote “We feel this is simply too beautiful a result to not be true.” Spilker’s proof of this
conjecture is a motivation for this current paper, wherein we extend the latter Fibonacci
result to the more general setting of G2G0,G1

(k) for all k values. In this paper, we prove the

following main results given in Table 2. Note that the value µ (given in Definition 2.3) equals
G2

1 −G0G1 −G2
0, and the value gk equals gcd

(
G2

k+1 −G2
1, G

2
k+2 −G2

2

)
.

k F2(k) L2(k) G2G0,G1
(k) Proof in this paper

k even and 5 - µ Fk 5Fk Fk Theorems 5.2, 5.4, and 4.7, respectively

k even and 5 | µ Fk 5Fk 5Fk Theorems 5.2, 5.4, and 4.7, respectively

k ≡ 3 (mod 6) 2 2 gcd(2µ, gk) Theorems 5.2, 5.4, and 3.11, respectively

k ≡ 1, 5 (mod 6) 1 1 gcd(2µ, gk) Theorems 5.2, 5.4, and 3.11, respectively

Table 2. Closed forms for the values F2(k), L2(k), and G2G0,G1
(k)

Remark 1.1. Compare Tables 1 and 2 and the closed forms for the values F(k) and F2(k),
respectively, when k is even. Observe that F(k) = Fk/2 when k ≡ 0 (mod 4), whereas
F(k) = Lk/2 when k ≡ 2 (mod 4). However in this new setting of the GCD of sums of

squares of k consecutive Fibonacci numbers, the values F2(k) have no dependency on the
residue class modulo 4 of k when k is even, so in some sense F2(k) is more well behaved
than its seemingly simpler counterpart F(k). Similar phenomena happens for k even when we
compare L(k) and L2(k).

The paper is broken down as follows. In Section 2, we provide the necessary definitions
used in the subsequent sections. In Section 3, we give a simple formula for the value G2G0,G1

(k).

In Section 4, we provide nice closed forms for the value G2G0,G1
(k). Moreover in Section 5, we

provide similarly nice closed forms for the values F2(k) and L2(k), respectively. Finally in
Section 6, we end with some tantalizing open questions.
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2. Preliminary definitions

Definition 2.1. The generalized Fibonacci sequence (Gn)n≥0 is defined by the recurrence
relation

Gn = Gn−1 +Gn−2

for n ≥ 2 and arbitrary initial conditions G0, G1 ∈ Z. The Fibonacci sequence (Fn)n≥0 is

recovered when G0 = 0 and G1 = 1, and the Lucas sequence (Ln)n≥0 is recovered when G0 = 2
and G1 = 1. For brevity, we use the term Gibonacci sequence to refer to any generalized
Fibonacci sequence.

Convention 2.2. For reasons explained in Theorem 3.6 and Convention 3.7, it suffices to
consider only the Gibonacci sequences with relatively prime initial conditions G0 and G1.

Definition 2.3. The characteristic of the Gibonacci sequence (Gn)n≥0 is denoted µ and is
defined as µ = G2

1 −G0G1 −G2
0.

Remark 2.4. Many authors have differing notation and/or equivalent definitions for this value
µ. For instance, Guyer-Mbirika denote this value as DG0,G1 to highlight this value’s depen-
dency on the initial conditions [4]. Moreover, Koshy maintains the symbol µ, but defines it as
G2

1 +G1G2 −G2
2 [6]. On the other hand, Vajda reserves no symbol for µ but writes the value

as G2
1 −G0G2 [12].

Lastly, it is well known that the Fibonacci and Lucas sequences (and more generally any Gi-
bonacci sequence) under a modulus are periodic. The lengths of the periods of these sequences
are called Pisano periods. More generally, we have the following definition of the length of the
period of a Gibonacci sequence under a modulus.

Definition 2.5. Let m ≥ 2. The generalized Pisano period, πG0,G1(m), of the Gibonacci
sequence (Gn)n≥0 is the smallest positive integer r such that

Gr ≡ G0 (mod m) and Gr+1 ≡ G1 (mod m).

The value r is dependent on both the initial conditions G0, G1 ∈ Z and the modulus m. In the
Fibonacci (respectively, Lucas) setting we denote this period by πF (m) (respectively, πL(m)).

3. The generalized Fibonacci setting

3.1. A formula for G2G0,G1
(k). In this subsection, we derive the following formula for G2G0,G1

(k)
in Theorem 3.4:

G2G0,G1
(k) = gcd

(
GkGk+1 −G0G1, G

2
k+1 −G2

1, G
2
k+2 −G2

2

)
.

Lemma 3.1. Let (an)n≥0 be a sequence of integers. The following identity holds:

gcd(a0, a1, a2, a3, . . .) = gcd(a0, a1 − a0, a2 − a1, a3 − a2, . . .).

Proof. Set d := gcd(a0, a1, a2, a3, . . .) and e := gcd(a0, a1 − a0, a2 − a1, a3 − a2, . . .). We will
show that d = e. By assumption, d divides ai for all i ≥ 0, and hence d divides ai+1−ai for all
i ≥ 0. Hence d divides e and so d ≤ e. To prove the reverse inequality, observe that e divides
both a0 and a1 − a0, and hence e divides a1. Consequently since e divides a1 and a2 − a1,
then e divides a2. Continuing inductively in this manner, we see that e must divide ai for all
i. Hence e divides d and so e ≤ d. �
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The next two lemmas are well-known results whose proofs can be found in Vajda [12].

Lemma 3.2. For all k ≥ 1, we have

k∑
i=1

G2
i = GkGk+1 −G0G1.

Proof. See Identity (44) of Vajda [12, p. 43]. �

Lemma 3.3. For all m,n ∈ Z, we have

Gm+n = Gm+1Fn +GmFn−1.

Proof. See Identity (8) of Vajda [12, pp. 24–25]. �

We are now ready to prove the main theorem of this subsection, namely a formula for the
value G2G0,G1

(k).

Theorem 3.4. For all k ≥ 1, we have

G2G0,G1
(k) = gcd

(
GkGk+1 −G0G1, G

2
k+1 −G2

1, G
2
k+2 −G2

2

)
.

Proof. Fix k ≥ 1 and for n ≥ 0, set Sn :=
∑k

i=1G
2
n+i and Hn := Sn+1 − Sn. Hence we have

G2G0,G1
(k) = gcd (S0, S1, S2, S3, . . .) = gcd (S0, H0, H1, H2, . . .) ,

where the second equality holds by Lemma 3.1. We will show that for all n ≥ 2, the value
Hn is a linear combination of S0, H0, and H1, and hence the last equality above coincides
with gcd(S0, H0, H1), and the result follows. To that end, we first prove the following two
equivalent expressions for Sn and Hn, respectively:

Sn = Gn+kGn+k+1 −GnGn+1 (3.1)

Hn = G2
n+(k+1) −G

2
n+1. (3.2)

Identity (3.1) holds by the sequence of equalities

Sn =
k∑

i=1

G2
n+i

=

n+k∑
i=1

G2
i −

n∑
i=1

G2
i

= (Gn+kGn+k+1 −G0G1)− (GnGn+1 −G0G1) by Lemma 3.2

= Gn+kGn+k+1 −GnGn+1.

Moreover, Identity (3.2) holds by the sequence of equalities

Hn = Sn+1 − Sn

=
k∑

i=1

G2
n+1+i −

k∑
i=1

G2
n+i

= (G2
n+2 +G2

n+3 + · · ·+G2
n+(k+1))− (G2

n+1 +G2
n+2 + · · ·+G2

n+k)

= G2
n+(k+1) −G

2
n+1.
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Applying Lemma 3.3 to both Gn+(k+1) and Gn+1 in the latter equality and expanding the
squared terms, we have

Hn = (Gk+2Fn +Gk+1Fn−1)
2 − (G2Fn +G1Fn−1)

2

=
(
G2

k+2F
2
n +G2

k+1F
2
n−1 + 2(Gk+1Gk+2)(Fn−1Fn)

)
−
(
G2

2F
2
n +G2

1F
2
n−1 + 2(G1G2)(Fn−1Fn)

)
=
(
G2

k+2 −G2
2

)
· F 2

n +
(
G2

k+1 −G2
1

)
· F 2

n−1

+ 2 (Gk+1Gk+2 −G1G2) · (Fn−1Fn)

= H1F
2
n +H0F

2
n−1 + 2S1(Fn−1Fn).

where the last equality holds by Identities (3.1) and (3.2). Lastly, since H0 = S1 − S0 implies
S1 = H0 + S0, we can rewrite the last equality as

Hn = S0(2Fn−1Fn) +H0(F
2
n−1 + 2Fn−1Fn) +H1F

2
n ,

and hence for n ≥ 2, we see that Hn is an integer linear combination of S0, H0, and H1, as
desired. We conclude that

G2G0,G1
(k) = gcd (S0, H0, H1, H2, . . .)

= gcd (S0, H0, H1)

= gcd
(
GkGk+1 −G0G1, G

2
k+1 −G2

1, G
2
k+2 −G2

2

)
,

where the last equality holds by Identities (3.1) and (3.2). �

Next we show that it is sufficient to explore only the Gibonacci sequences which have
relatively prime initial values

Lemma 3.5. For all n ∈ Z, the values gcd(Gn+1, Gn+2) and gcd(Gn, Gn+1) coincide. In
particular, gcd(G0, G1) = gcd(Gn, Gn+1) for all n ∈ Z.

Proof. See Lemma 18 of Guyer-Mbirika [4]. �

Theorem 3.6. Fix G0, G1 ∈ Z and set d := gcd(G0, G1). Consider the two Gibonacci se-
quences (Gn)n≥0 and (G′n)n≥0, where (G′n)∞n=0 is generated by the relatively prime initial con-

ditions G′0 = G0
d and G′1 = G1

d . Then the following equality holds:

G2G0,G1
(k) = d2 · G2G′0,G′1(k).

Proof. Set d := gcd(G0, G1). By Lemma 3.5, we have gcd(Gk+1, Gk+2) = gcd(G0, G1) = d for
all k ∈ Z. By Theorem 3.4, we have G2G0,G1

(k) = gcd
(
GkGk+1 −G0G1, G

2
k+1 −G2

1, G
2
k+2 −G2

2

)
.

Moreover, since d divides G0 and G1, then d divides every term in the sequence (Gn)n≥0. In

particular,
GkGk+1−G0G1

d2
,
G2

k+1−G
2
1

d2
, and

G2
k+2−G

2
2

d2
are integers. Observe the sequence of equal-

ities

G2G0,G1
(k) = gcd

(
GkGk+1 −G0G1, G

2
k+1 −G2

1, G
2
k+2 −G2

2

)
= gcd

(
d2 · GkGk+1 −G0G1

d2
, d2 ·

G2
k+1 −G2

1

d2
, d2 ·

G2
k+2 −G2

2

d2

)

= d2 · gcd

(
GkGk+1 −G0G1

d2
,
G2

k+1 −G2
1

d2
,
G2

k+2 −G2
2

d2

)
.
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However, by Theorem 3.4, the value gcd

(
GkGk+1−G0G1

d2
,

G2
k+1−G

2
1

d2
,

G2
k+2−G

2
2

d2

)
is the GCD of

the sum of k consecutive squares of Gibonacci numbers in the new sequence (G′n)∞n=0 generated

by the initial values G′0 = G0
d and G′1 = G1

d . Clearly G′0 and G′1 are relatively prime. In

particular, we have G2G0,G1
(k) = d2 · G2G′0,G′1(k), as desired. �

Convention 3.7. In order to give a complete classification of the GCD of every sum
of k consecutive squares of Gibonacci numbers, as a consequence of Theorem 3.6, we
need only to consider Gibonacci sequences with relatively prime initial values.

3.2. Simplified formulas for G2G0,G1
(k) when k is even versus odd. In this subsection,

we reveal that the formula for G2G0,G1
(k) given in Theorem 3.4 in the previous subsection can

be simplified further if we consider the two cases of the parity of k as follows:

G2G0,G1
(k) =

{
gcd

(
G2

k+1 −G2
1, G

2
k+2 −G2

2

)
, if k is even,

gcd
(
2µ, G2

k+1 −G2
1, G

2
k+2 −G2

2

)
, if k is odd,

where the characteristic µ is defined as G2
1−G0G1−G2

0 (recall Definition 2.3 and Remark 2.4).
Pivotal in the proof of the formulas above is the use of the following lemma known as Cassini’s
identity for generalized Fibonacci sequences.

Lemma 3.8 (Generalized Cassini’s Identity). Let n ≥ 1 be given. Then the following identity
holds: Gn+1Gn−1 −G2

n = (−1)n · µ, where µ = G2
1 −G0G1 −G2

0.

Proof. See Identity (28) of Vajda [12, p. 32]. �

Lemma 3.9. Let DGn,Gn+1 denote the value G2
n+1−GnGn+1−G2

n. Then the following holds:

DGn,Gn+1 = (−1)n · µ (3.3)

for all n ≥ 0, where µ = DG0,G1 (i.e., the characteristic G2
1 −G0G1 −G2

0). In particular, we
have |DGn,Gn+1 | = |µ| for all n ≥ 0.

Proof. See Lemma 34 of Guyer-Mbirika [4]. �

Lemma 3.10. For all k ≥ 1, we have(
G2

k −G2
0

)
− 3

(
G2

k+1 −G2
1

)
+
(
G2

k+2 −G2
2

)
=

{
0, if k is even,

4µ, if k is odd,

where µ = G2
1 −G0G1 −G2

0.

Proof. For ease of notation, set Mi := G2
k+i −G2

i . Hence it suffices to show the following:

M0 − 3M1 +M2 =

{
0, if k is even,

4µ, if k is odd.

Since Gk = Gk+2 −Gk+1 and G0 = G2 −G1, we have the sequence of equalities

M0 = G2
k −G2

0

= (Gk+2 −Gk+1)
2 − (G2 −G1)

2

=
(
G2

k+2 − 2Gk+1Gk+2 +G2
k+1

)
−
(
G2

2 − 2G1G2 +G2
1

)
260 VOLUME 60, NUMBER 5
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=
(
G2

k+2 −G2
2

)
+
(
G2

k+1 −G2
1

)
− 2 (Gk+1Gk+2 −G1G2)

= M2 +M1 − 2 (Gk+1Gk+2 −G1G2) .

Thus it follows that

M0 − 3M1 +M2 = 2M2 − 2M1 − 2 (Gk+1Gk+2 −G1G2) . (3.4)

Recalling from Lemma 3.10 that DGn,Gn+1 = G2
n+1 − GnGn+1 − G2

n, the right side of Equa-
tion (3.4) decomposes as

2M2−2M1 − 2 (Gk+1Gk+2 −G1G2)

= 2
(
G2

k+2 −G2
2

)
− 2

(
G2

k+1 −G2
1

)
− 2 (Gk+1Gk+2 −G1G2)

= 2
(
G2

k+2 −Gk+1Gk+2 −G2
k+1

)
− 2

(
G2

2 −G1G2 −G2
1

)
= 2DGk+1,Gk+2

− 2DG1,G2

= 2
(

(−1)k+1 · µ
)
− 2

(
(−1)1 · µ

)
by Lemma 3.10

= 2
(

(−1)k+1 + 1
)
· µ

=

{
0, if k is even,

4µ, if k is odd.

Combining the latter equality with Equation (3.4), the result follows. �

We are now ready to state and prove the main theorem of this subsection.

Theorem 3.11. For all k ≥ 1, we have

G2G0,G1
(k) =

{
gcd

(
G2

k+1 −G2
1, G

2
k+2 −G2

2

)
, if k is even,

gcd
(
2µ, G2

k+1 −G2
1, G

2
k+2 −G2

2

)
, if k is odd,

where µ = G2
1 −G0G1 −G2

0.

Proof. For ease of notation, set Mi := G2
k+i − G2

i . Hence it suffices to show that if k is even

(respectively, odd), then G2G0,G1
(k) = gcd(M1,M2) (respectively, G2G0,G1

(k) = gcd(2µ,M1,M2)).
To that end, observe the sequence of equalities

GkGk+1 −G0G1 = Gk(Gk+2 −Gk)−G0(G2 −G0)

= GkGk+2 −G2
k −G0G2 +G2

0

= (G2
k+1 + (−1)k+1µ)−G2

k − (G2
1 + (−1)1µ) +G2

0 by Lemma 3.8

= (G2
k+1 −G2

1)− (G2
k −G2

0) +
(

(−1)k+1 + 1
)
· µ

= M1 −M0 +
(

(−1)k+1 + 1
)
· µ.

So it follows that

GkGk+1 −G0G1 =

{
M1 −M0, if k is even, (3.5a)

M1 −M0 + 2µ, if k is odd. (3.5b)

By Theorem 3.4, if k is even, then we have

G2G0,G1
(k) = gcd

(
GkGk+1 −G0G1, G

2
k+1 −G2

1, G
2
k+2 −G2

2

)
= gcd (GkGk+1 −G0G1,M1,M2)
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= gcd(M1 −M0,M1,M2) by Equation (3.5a)

= gcd(M0,M1,M2)

= gcd(3M1 −M2,M1,M2) by Lemma 3.10

= gcd(M1,M2),

as desired. On the other hand, if k is odd, then we have

G2G0,G1
(k) = gcd

(
GkGk+1 −G0G1, G

2
k+1 −G2

1, G
2
k+2 −G2

2

)
= gcd (GkGk+1 −G0G1,M1,M2)

= gcd(M1 −M0 + 2µ,M1,M2) by Equation (3.5b)

= gcd(−M0 + 2µ,M1,M2)

= gcd(−3M1 +M2 − 2µ,M1,M2) by Lemma 3.10

= gcd(−2µ,M1,M2)

= gcd(2µ,M1,M2),

as desired. �

4. Closed forms in the generalized Fibonacci setting

In this section, we prove the following closed forms on the GCD of the sum of k consecutive
squares of Gibonacci numbers, noting gk := gcd

(
G2

k+1 −G2
1, G

2
k+2 −G2

2

)
:

k G2G0,G1
(k) Proof in this paper

k even and 5 - µ Fk Theorem 4.7

k even and 5 | µ 5Fk Theorem 4.7

k ≡ 3 (mod 6) gcd(2µ, gk) Theorem 3.11

k ≡ 1, 5 (mod 6) gcd(2µ, gk) Theorem 3.11

4.1. Closed form for G2G0,G1
(k) when k is even.

Lemma 4.1. For all i ∈ Z, we have

Gi = G0Fi−1 +G1Fi.

Proof. This follows from Lemma 3.3, if we set m := i and n := 0. �

The following well-known identity is a generalization of Cassini’s Identity (recall Lemma 3.8)
in the Fibonacci setting and will be useful in proving Lemma 4.3.

Lemma 4.2 (Catalan’s Identity). For n, r ∈ Z with n ≥ r, we have

F 2
n − Fn−rFn+r = (−1)n−rF 2

r .

Proof. See Theorem 5.11 of Koshy [6, p. 106]. �

The next lemma reveals the interesting fact that if k is even, then Fk divides the difference
of the squares of any two Fibonacci numbers that are k terms apart. We use this fact to prove
the subsequent result, Lemma 4.6, which states that if k is even, then Fk also divides the
difference of the squares of any two Gibonacci numbers that are k terms apart.

Lemma 4.3. For k ≥ 0 with k even and ` ∈ Z, we have

F 2
k+` − F 2

` = FkFk+2`.
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Proof. By Catalan’s Identity of Lemma 4.2, if we set r := ` and n := k+ `, then it follows that

F 2
k+` − F(k+`)−`F(k+`)+` = (−1)(k+`)−`F 2

` .

Noting that k is even, the latter equality reduces to F 2
k+` − FkFk+2` = F 2

` , and the result
follows. �

Corollary 4.4. For k ≥ 0 with k even and ` ∈ Z, we have

F 2
k+`−1 − F 2

`−1 = FkFk+2`−2.

Proof. This follows immediately from Lemma 4.3 if we replace ` with `− 1. �

Lemma 4.5. For k, ` ≥ 0 with k even, we have

Fk+`−1Fk+` − F`−1F` = FkFk+2`−1.

Proof. By Identity (20a) of Vajda [12, p. 28], for all a, b, c ≥ 0, we have the following identity:

Fa+bFa+c − (−1)aFbFc = FaFa+b+c

Setting a := k, b := `− 1, and c := `, and noting that k is even, the result follows. �

Lemma 4.6. For k, ` ≥ 0 with k even, we have

G2
k+` −G2

` = Fk ·
(
G2

0Fk+2`−2 + 2G0G1Fk+2`−1 +G2
1Fk+2`

)
.

Proof. For ease of notation, set γk,` := G2
0Fk+2`−2 + 2G0G1Fk+2`−1 +G2

1Fk+2`. Observe that

G2
k+` −G2

`

= (G0Fk+`−1 +G1Fk+`)
2 − (G0F`−1 +G1F`)

2 by Lemma 4.1

=
(
G2

0F
2
k+`−1 + 2G0G1Fk+`−1Fk+` +G2

1F
2
k+`

)
−
(
G2

0F
2
`−1 + 2G0G1F`−1F` +G2

1F
2
`

)
= G2

0

(
F 2
k+`−1 − F 2

`−1
)

+G2
1

(
F 2
k+` − F 2

`

)
+ 2G0G1 (Fk+`−1Fk+` − F`−1F`)

= G2
0(FkFk+2`−2) +G2

1(FkFk+2`) + 2G0G1 (Fk+`−1Fk+` − F`−1F`) by Lemma 4.3

= G2
0(FkFk+2`−2) +G2

1(FkFk+2`) + 2G0G1(FkFk+2`−1) by Lemma 4.5

= Fk ·
(
G2

0Fk+2`−2 + 2G0G1Fk+2`−1 +G2
1Fk+2`

)
= Fk · γk,`,

and the result follows. �

We are now ready to state and prove the main theorem of this subsection.

Theorem 4.7. For all k ≥ 1 with k even, we have

G2G0,G1
(k) =

{
Fk, if 5 does not divide µ,

5Fk, if 5 divides µ,

where µ = G2
1 −G0G1 −G2

0.

Proof. Suppose that k ≥ 1 is even. Recalling that γk,` := G2
0Fk+2`−2+2G0G1Fk+2`−1+G2

1Fk+2`

from Lemma 4.6, we have the sequence of equalities

G2G0,G1
(k) = gcd

(
G2

k+1 −G2
1, G

2
k+2 −G2

2

)
by Theorem 3.11

= gcd(Fk · γk,1, Fk · γk,2) by Lemma 4.6

= Fk · gcd(γk,1, γk,2).

DECEMBER 2022 263



THE FIBONACCI QUARTERLY

It suffices to show that gcd(γk,1, γk,2) = gcd(µ, 5). Setting βn := G2
0Fn+2G0G1Fn+1+G2

1Fn+2,
we see that γk,1 = βk and γk,2 = βk+2. Moreover, the sequence (βn)n≥0 is itself a generalized
Fibonacci sequence since the recursion βn+2 = βn + βn+1 holds for all n ≥ 0 as follows:

βn+2 = G2
0Fn+2 + 2G0G1Fn+3 +G2

1Fn+4

= G2
0(Fn + Fn+1) + 2G0G1(Fn+1 + Fn+2) +G2

1(Fn+2 + Fn+3)

=
(
G2

0Fn + 2G0G1Fn+1 +G2
1Fn+2

)
+
(
G2

0Fn+1 + 2G0G1Fn+2 +G2
1Fn+3

)
= βn + βn+1.

Hence gcd(βn, βn+1) = gcd(β0, β1) for all n ≥ 0 by Lemma 3.5. Thus we have

gcd(γk,1, γk,2) = gcd(βk, βk+2) = gcd(βk, βk + βk+1) = gcd(βk, βk+1) = gcd(β0, β1).

Since β0 = 2G0G1 +G2
1 and β1 = G2

0 + 2G0G1 + 2G2
1, it follows that

gcd(γk,1, γk,2) = gcd(β0, β1) = gcd
(
2G0G1 +G2

1, G
2
0 + 2G0G1 + 2G2

1

)
= gcd

(
2G0G1 +G2

1, G
2
0 +G2

1 + (2G0G1 +G2
1)
)

= gcd
(
2G0G1 +G2

1, G
2
0 +G2

1

)
.

We now show that gcd
(
2G0G1 +G2

1, G
2
0 +G2

1

)
= gcd(µ, 5) by proving the following two

claims:

gcd
(
2G0G1 +G2

1, G
2
0 +G2

1

)
≥ gcd(µ, 5), and (4.1)

gcd
(
2G0G1 +G2

1, G
2
0 +G2

1

)
≤ gcd(µ, 5). (4.2)

To that end, suppose that for some prime p and j ≥ 1, we have pj divides gcd(µ, 5). Then
pj divides 5, in particular, and hence p = 5 and j = 1, and so 5 divides µ. Observe that

(2G0 +G1)
2 = 4G2

0 + 4G0G1 +G2
1 ≡ −G2

0 −G0G1 +G2
1 ≡ µ (mod 5). (4.3)

But since 5 divides µ, we deduce that (2G0+G1)
2 ≡ 0 (mod 5), and hence 5 divides 2G0+G1.

This yields the congruence 2G0G1 + G2
1 = (2G0 + G1)G1 ≡ 0 (mod 5), and so 5 divides

2G0G1 +G2
1. Moreover, observe that

G2
0 +G2

1 = 5G2
0 − 4G2

0 +G2
1 ≡ −4G2

0 +G2
1 (mod 5)

≡ −(4G2
0 −G2

1) (mod 5)

≡ −(2G0 +G1)(2G0 −G1) (mod 5)

≡ 0 (mod 5),

since 5 divides 2G0 + G1. Hence 5 divides G2
0 + G2

1. Thus pj divides both 2G0G1 + G2
1 and

G2
0+G2

1, and we conclude pj divides gcd
(
2G0G1 +G2

1, G
2
0 +G2

1

)
, which proves Inequality (4.1)

holds.
To prove Inequality (4.2) holds, suppose that for some prime p and j ≥ 1, we have pj divides

gcd
(
2G0G1 +G2

1, G
2
0 +G2

1

)
. Then pj divides both 2G0G1 + G2

1 and G2
0 + G2

1. The prime p
cannot divide G1 for otherwise it would also divide G0, contradicting gcd(G0, G1) = 1 (recall
Convention 2.2). Since pj divides 2G0G1 +G2

1 and 2G0G1 +G2
1 = (2G0 +G1)G1, then pj must

divide 2G0 +G1 since p does not divide G1. Thus we have

5G2
0 =

(
4G2

0 −G2
1

)
+
(
G2

0 +G2
1

)
= (2G0 +G1)(2G0 −G1) +

(
G2

0 +G2
1

)
≡ 0 (mod pj),
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and hence pj divides 5G2
0. The prime p cannot divide G0 for otherwise it would also divide

G1, contradicting gcd(G0, G1) = 1. Thus, pj dividing 5G2
0 implies that pj divides 5, and hence

p = 5 and j = 1. Since we proved earlier that pj divides 2G0 + G1, it follows that 5 divides
2G0 + G1. In particular, due to Congruence (4.3), we have 5 divides µ. We conclude pj

divides gcd(µ, 5), which proves Inequality (4.2) holds. Therefore G2G0,G1
(k) = Fk · gcd(µ, 5), as

desired. �

4.2. Remarks on the closed form for G2G0,G1
(k) when k is odd. When k is odd, Theo-

rem 3.11 yields the following closed form for the value G2G0,G1
(k):

G2G0,G1
(k) = gcd(2µ, gk),

where gk := gcd
(
G2

k+1 −G2
1, G

2
k+2 −G2

2

)
. We immediately arrive at the following theorem as

a consequence.

Theorem 4.8. For all k ≥ 1 with k odd, we have G2G0,G1
(k) divides the value |2µ| where

µ = G2
1 −G0G1 −G2

0.

Proof. Given any odd integer k ≥ 1, Theorem 3.11 implies that G2G0,G1
(k) = gcd(2µ, gk), where

gk := gcd
(
G2

k+1 −G2
1, G

2
k+2 −G2

2

)
. Hence G2G0,G1

(k) divides |2µ|, and the result follows. �

Remark 4.9. It is worthy to note that Theorem 4.8 does not necessarily hold for even k values.
For example, consider the Fibonacci setting with k = 4. Then F2(k) = F4 = 3 by Theorem 5.2.
In the Fibonacci setting, µ = 1, however 3 does not divide |2µ|, which equals 2.

Remark 4.10. It is also worthy to note that the sequence (G2G0,G1
(k))k≥1 can attain all positive

divisors of |2µ| as values. For example, consider the Gibonacci sequence with initial values
G0 = 3 and G1 = 1. Then µ = 12 − 1 · 3 − 32 = −11 and hence |2µ| = 22. Using the closed
form G2G0,G1

(k) = gcd(2µ, gk) implied by Theorem 3.11, we leave it to the reader to verify the
following:

G2G0,G1
(k) =


1, if k = 7,

2, if k = 3,

11, if k = 5,

22, if k = 15.

The following theorem provides a sufficiency condition for when the value G2G0,G1
(k) attains

its maximal value |2µ| in the case that k is odd.

Theorem 4.11. Let k ≥ 1 be odd, and set `k := gcd(Gk+1 − G1, Gk+2 − G2). If 2µ divides
`k, then G2G0,G1

(k`) = |2µ| for all odd integers ` ≥ 1.

Proof. Suppose that k ≥ 1 is odd, and set `k := gcd(Gk+1 − G1, Gk+2 − G2). Assume that
2µ divides `k. Then 2µ divides both Gk+1 − G1 and Gk+2 − G2. By a simple inductive
argument, the latter implies that 2µ divides Gk+n − Gn for all n ≥ 1. Hence, it follows that
2µ divides Gki+1 − Gk(i−1)+1 and also Gki+2 − Gk(i−1)+2 for all 1 ≤ i ≤ `. Moreover, since∑`

i=1

(
Gki+1 −Gk(i−1)+1

)
= Gk`+1 − G1 and

∑`
i=1

(
Gki+2 −Gk(i−1)+2

)
= Gk`+2 − G2, then

we conclude that 2µ divides both Gk`+1 −G1 and Gk`+2 −G2. Recalling that Theorem 3.11
implies the formula G2G0,G1

(k) = gcd(2µ, gk), where gk := gcd
(
G2

k+1 −G2
1, G

2
k+2 −G2

2

)
, we

have

gk` = gcd
(
G2

k`+1 −G2
1, G

2
k`+2 −G2

2

)
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= gcd
(
(Gk`+1 −G1)(Gk`+1 +G1), (Gk`+2 −G2)(Gk`+2 +G2)

)
,

and hence 2µ divides gk`. Thus G2G0,G1
(k`) = gcd(2µ, gk`) = |2µ| for all odd integers ` ≥ 1. �

Example 4.12. Consider the Gibonacci sequence (Gn)n≥0 with initial values G0 = 2 and
G1 = 7. Then µ = 72 − 2 · 7− 22 = 31. Also observe that for k = 15, we have

`15 = gcd(G16 −G1, G17 −G2) = gcd(8122, 13144) = 62,

and indeed 2µ clearly divides `k since 2µ = `k, in particular, in this case. Hence by Theo-
rem 4.11, we know G2G0,G1

(15`) = 62 for all odd integers ` ≥ 1. We leave it to the reader to
verify this.

5. Closed forms in the Fibonacci and Lucas settings

In this section, we prove the following closed forms on the GCD of the sum of k consecutive
squares of Fibonacci and Lucas numbers:

k F2(k) L2(k) Proof in this paper

k even Fk 5Fk Theorems 5.2 and 5.4, respectively
k ≡ 3 (mod 6) 2 2 Theorems 5.2 and 5.4, respectively
k ≡ 1, 5 (mod 6) 1 1 Theorems 5.2 and 5.4, respectively

Lemma 5.1. For all n ∈ Z, the value Fn is even if and only if 3 divides n.

Proof. This follows from the fact that F3 = 2 and the well-known identity, Fm divides Fn if
and only if m divides n (see Corollary 10.2 of Koshy [6, p. 173]). �

Theorem 5.2. For all k ≥ 1, we have

F2(k) =


Fk, if k is even,

2, if k ≡ 3 (mod 6),

1, if k ≡ 1, 5 (mod 6).

Proof. Since µ = F 2
1 −F0F1−F 2

0 = 1, Theorem 4.7 in the Fibonacci setting yields F2(k) = Fk

when k is even since 5 does not divide µ. On the other hand, when k is odd, Theorem 4.8
in the Fibonacci setting yields F2(k) divides |2µ|, and hence F2(k) = 1 or 2. Recall that by
Theorem 3.4 in the Fibonacci setting, we have

F2(k) = gcd
(
FkFk+1, F

2
k+1 − 1, F 2

k+2 − 1
)
,

and hence if F2(k) = 2, then 2 divides FkFk+1 so either Fk or Fk+1 is even. However, 2
dividing F 2

k+1 − 1 implies Fk+1 is odd, and thus Fk must be even. By Lemma 5.1, it follows
that 3 divides k, and in particular k ≡ 3 (mod 6) since k is odd. On the other hand, if k ≡ 3
(mod 6), then 3 divides k and hence Fk is even by Lemma 5.1, and so both Fk+1 and Fk+2

are both odd implying F 2
k+1 − 1 and F 2

k+2 − 1 are both even. Thus F2(k) is even; that is,

F2(k) = 2 is forced. Thus if k is odd, then F2(k) = 2 if and only if k ≡ 3 (mod 6). And
consequently if k is odd, then F2(k) = 1 if and only if k ≡ 1, 5 (mod 6). �

To prove the Lucas version of Theorem 5.2, we first give the Lucas version of the necessary
and sufficient condition for Ln to be even (compare this with the Fibonacci version given in
Lemma 5.1).

Lemma 5.3. For all n ∈ Z, the value Ln is even if and only if 3 divides n.

Proof. See Identity (23.2) in Theorem 23.1 of Koshy [6, p. 462]. �
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Theorem 5.4. For all k ≥ 1, we have

L2(k) =


5Fk, if k is even,

2, if k ≡ 3 (mod 6),

1, if k ≡ 1, 5 (mod 6).

Proof. Since µ = L2
1 − L0L1 − L2

0 = −5, Theorem 4.7 in the Lucas setting yields L2(k) = 5Fk

when k is even since 5 divides µ. On the other hand, when k is odd, Theorem 4.8 in the Lucas
setting yields L2(k) divides |2µ|, and hence L2(k) = 1, 2, 5, or 10. Recall that by Theorem 3.4
in the Lucas setting, we have

L2(k) = gcd
(
LkLk+1 − 2, L2

k+1 − 1, L2
k+2 − 9

)
.

We will first rule out the possibility that L2(k) = 5 or 10. Suppose by way of contradiction
that 5 divides L2(k). Then 5 divides both L2

k+1 − 1 and L2
k+2 − 9, and hence we have the

congruences

L2
k+1 ≡ 1 (mod 5) (5.1)

L2
k+2 ≡ 4 (mod 5). (5.2)

It is readily verified that πL(5) = 4, where πL(5) is the Pisano period of the Lucas se-
quence modulo 5 (recall Definition 2.5). This length 4 period repeats the sequence terms
(Ln (mod 5))3n=0 = (2, 1, 3, 4). Squaring this sequence we get (L2

n (mod 5))3n=0 = (4, 1, 4, 1),
a repeating sequence of length 2. More precisely, L2

n ≡ 4 (mod 5) if and only if n is even, and
hence Congruences (5.1) and (5.2) force k to be even, which is a contradiction. Therefore,
L2(k) 6= 5 or 10, and thus L2(k) = 1 or 2.

If L2(k) = 2, then 2 divides LkLk+1−2, L2
k+1−1, and L2

k+2−9. Since 2 divides LkLk+1−2,

then either Lk or Lk+1 is even. However, 2 dividing L2
k+1 − 1 implies Lk+1 is odd, and thus

Lk must be even. By Lemma 5.3, it follows that 3 divides k, and in particular k ≡ 3 (mod 6)
since k is odd. On the other hand, if k ≡ 3 (mod 6), then 3 divides k and hence Fk is even
by Lemma 5.3, and so Lk+1 and Lk+2 are both odd implying L2

k+1 − 1 and L2
k+2 − 1 are both

even. Thus L2(k) is even; that is, L2(k) = 2 is forced. Thus if k is odd, then L2(k) = 2 if and
only if k ≡ 3 (mod 6). And consequently if k is odd, then L2(k) = 1 if and only if k ≡ 1, 5
(mod 6). �

6. Open questions

6.1. Extension to higher powers.

Question 6.1. For k even, the formulas for the GCD of all sums of k consecutive Gibonacci
numbers and the GCD of all sums of k consecutive squares of Gibonacci numbers, respectively
are

GG0,G1(k) = gcd(Gk+1 −G1, Gk+2 −G2)

G2G0,G1
(k) = gcd

(
G2

k+1 −G2
1, G

2
k+2 −G2

2

)
.

The first formula holds from Guyer-Mbirika [4, Theorem 15], while the second formula holds
from Theorem 3.11 in this current paper. For certain even values k and n ≥ 3, it seems
reasonable that the following may hold:

GnG0,G1
(k) = gcd

(
Gn

k+1 −Gn
1 , G

n
k+2 −Gn

2

)
.
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Although this does not appear to be true even in the case of n = 3, data collected via
Mathematica for this n value in the Fibonacci and Lucas settings supports the following
conjectures for k even:

F3(k) =

{
gcd

(
F 3
k+1 − 1, F 3

k+2 − 1
)
, if 6 divides k,

1
2 · gcd

(
F 3
k+1 − 1, F 3

k+2 − 1
)
, if 6 does not divide k.

L3(k) =

{
gcd

(
L3
k+1 − 1, L3

k+2 − 9
)
, if 6 divides k,

1
2 · gcd

(
L3
k+1 − 1, L3

k+2 − 9
)
, if 6 does not divide k.

Can this conjecture not only be proved, but also extended to higher values n ≥ 4?

Question 6.2. Fix G0, G1 ∈ Z and set d := gcd(G0, G1). Consider the two Gibonacci se-
quences (Gn)n≥0 and (G′n)n≥0, where (G′n)∞n=0 is generated by the relatively prime initial

conditions G′0 = G0
d and G′1 = G1

d . Then the following identities holds:

GG0,G1(k) = d · GG′0,G′1(k)

G2G0,G1
(k) = d2 · G2G′0,G′1(k).

The first formula holds from Guyer-Mbirika [4, Theorem 19], while the second formula holds
from Theorem 3.6 in this current paper. Will it be the case that GnG0,G1

(k) = dn · GnG′0,G′1(k) for

all n ≥ 3?

6.2. Periodicity of the sequences (GG0,G1(k))k≥1 and (G2G0,G1
(k))k≥1 when k is odd.

Example 6.3. Consider the Gibonacci sequence with initial values G0 = −1 and G1 = 3. Then
µ = 32 − (−1)(3) − (−1)2 = 11. Moreover for k odd, we have the following (formal proofs
omitted, but easily verified using the formulas for GG0,G1(k) in Guyer-Mbirika [4, Theorem 15]
and G2G0,G1

(k) in Theorem 3.4 in this current paper, respectively):

GG0,G1(k) =

{
2, if k ≡ 3 (mod 6),

1, if k ≡ 1, 5 (mod 6),

and

G2G0,G1
(k) =


22, if k ≡ 15 (mod 30),

11, if k ≡ 5, 25 (mod 30),

2, if k ≡ 3, 9, 21, 27 (mod 30),

1, if k ≡ 1, 7, 11, 13, 17, 19, 23, 29 (mod 30).

Hence we have the periodic relationships in the sequences (GG0,G1(k))k≥1 and (G2G0,G1
(k))k≥1:

GG0,G1(k + 6) = GG0,G1(k) and G2G0,G1
(k + 30) = G2G0,G1

(k),

for all odd k.

Question 6.4. Under what conditions on the initial values G0 and G1 are GG0,G1(k) and
G2G0,G1

(k) periodic on odd k values?
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