ADVANCED PROBLEMS AND SOLUTIONS

EDITED BY
FLORIAN LUCA

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, WITS 2050, JOHANNESBURG, SOUTH AFRICA or by e-mail at the address florian.luca@wits.ac.za as files of the type tex, dvi, ps, doc, html, pdf, etc. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, all solutions sent by regular mail should be submitted on separate signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE

H-765 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu, Buzău, Romania.

Prove that for positive integer n and $m>0$ we have:
(i) $\frac{L_{n}^{4}+L_{n+1}^{4}}{L_{n} L_{n+1}}+\frac{L_{n+1}^{4}+L_{n+3}^{4}}{L_{n+1} L_{n+3}}+\frac{L_{n+3}^{4}+L_{n}^{4}}{L_{n+3} L_{n}} \geq \frac{2}{3} L_{n+4}^{2}$;
(ii) $\left(\sum_{k=1}^{n} F_{k}^{2 m+4}\right)\left(\sum_{k=1}^{n} \frac{1}{F_{k}^{2 m}}\right) \geq F_{n}^{2} F_{n+1}^{2}$;
(iii) $\left(\sum_{k=1}^{n} L_{k}^{2 m+4}\right)\left(\sum_{k=1}^{n} \frac{1}{L_{k}^{2 m}}\right) \geq\left(L_{n} L_{n+1}-1\right)^{2}$;
(iv) $\left(\sum_{k=1}^{n} F_{k}^{m+2}\right)\left(\sum_{k=1}^{n} \frac{1}{F_{k}^{m}}\right) \geq\left(F_{n+2}-1\right)^{2}$;
(v) $1+\sum_{k=1}^{n} \frac{F_{k}^{m+1}}{F_{n-k+1}^{m}} \geq F_{n+2} \quad$ and $\quad 3+\sum_{k=1}^{n} \frac{L_{k}^{m+1}}{L_{n-k+1}^{m}} \geq L_{n+2}$.

H-766 Proposed by H. Ohtsuka, Saitama, Japan.

Let $n=m+2$. For $m \geq 1$, prove that

$$
\sum_{h=1}^{m} \sum_{i=1}^{h} \sum_{j=1}^{i} \sum_{k=1}^{j} F_{k}^{4}=\frac{4 F_{n}^{4}+n^{4}-5 n^{2}}{100}
$$

H-767 Proposed by H. Ohtsuka, Saitama, Japan.

Prove that

$$
\lim _{n \rightarrow \infty} \sqrt{F_{2}^{2}+\sqrt{F_{4}^{2}+\sqrt{F_{8}^{2}+\sqrt{\cdots+\sqrt{F_{2^{n}}^{2}}}}}}=3
$$

H-768 Proposed by H. Ohtsuka, Saitama, Japan.

Let $\binom{n}{k}_{F}$ denote the Fibonomial coefficient. For $n \geq 1$, prove that
(i) $\sum_{k=0}^{n} F_{2(n-k)}\binom{2 n}{k}_{F}^{-1}=\frac{F_{2 n+1}\left(F_{2 n+2}+1\right)}{F_{2 n+3}}-\frac{F_{n+1} F_{n+3}}{F_{2 n+3}}\binom{2 n}{n}_{F}^{-1}$;
(ii) $\sum_{k=0}^{n} F_{2(n-k)}\binom{2 n}{k}_{F}^{-2}=\frac{F_{2 n+1}^{2}}{F_{2 n+2}}-\frac{F_{n+1}}{L_{n+1}}\binom{2 n}{n}_{F}^{-2}$.

SOLUTIONS

Integer Parts of Reciprocals of Tails of Infinite Products with Fibonacci Numbers

H-734 Proposed by H. Ohtsuka, Saitama, Japan.

(Vol. 51, No. 1, February 2013)
For $n \geq 3$ find closed form expressions for

$$
\left\lfloor\left(1-\prod_{k=n}^{\infty}\left(1-\frac{1}{F_{k}}\right)\right)^{-1}\right\rfloor \quad \text { and } \quad\left\lfloor\left(1-\prod_{k=n}^{\infty}\left(1-\frac{1}{F_{k}^{2}}\right)\right)^{-1}\right\rfloor .
$$

Here, $\lfloor x\rfloor$ be the largest integer less than or equal to x.

Solution by the proposer.

We need the following lemma.
Lemma 1. For $n \geq 3$, we have
(1) $\frac{F_{n-2}-1}{F_{n-2}}<\frac{F_{n}-1}{F_{n}} \times \frac{F_{n-1}-1}{F_{n-1}}$;
(2) $\frac{F_{n-2}}{F_{n-2}+1}>\frac{F_{n}-1}{F_{n}} \times \frac{F_{n-1}}{F_{n-1}+1}$;
(3) $\frac{F_{n} F_{n-1}-1}{F_{n} F_{n-1}}<\frac{F_{n}^{2}-1}{F_{n}^{2}} \times \frac{F_{n+1} F_{n}-1}{F_{n+1} F_{n}}$ (if n is odd);
(4) $\frac{F_{n} F_{n-1}}{F_{n} F_{n-1}+1}>\frac{F_{n}^{2}-1}{F_{n}^{2}} \times \frac{F_{n+1} F_{n}}{F_{n+1} F_{n}+1}$;
(5) $\frac{F_{n} F_{n-1}-2}{F_{n} F_{n-1}-1}<\frac{F_{n}^{2}-1}{F_{n}^{2}} \times \frac{F_{n+1} F_{n}-2}{F_{n+1} F_{n}-1}$;
(6) $\frac{F_{n} F_{n-1}-1}{F_{n} F_{n-1}}>\frac{F_{n}^{2}-1}{F_{n}^{2}} \times \frac{F_{n+1} F_{n}-1}{F_{n+1} F_{n}}$ (if n is even).

Proof. We will only prove (1) since all other verifications are similar. We have

$$
\begin{aligned}
& F_{n-2}\left(F_{n}-1\right)\left(F_{n-1}-1\right)-F_{n} F_{n-1}\left(F_{n-2}-1\right) \\
& =F_{n-2}+F_{n-1} F_{n}-F_{n-1} F_{n-2}-F_{n} F_{n-2} \\
& =F_{n-2}+F_{n-1}^{2}-F_{n} F_{n-2}=F_{n-2}+(-1)^{n} \geq 0
\end{aligned}
$$

Therefore, we obtain the desired inequality (1).
(i) Using Lemma 1 (1), we have

$$
\begin{aligned}
& \frac{F_{n-2}-1}{F_{n-2}} \leq \frac{F_{n}-1}{F_{n}} \times \frac{F_{n-1}-1}{F_{n-1}} \leq \frac{F_{n}-1}{F_{n}} \times \frac{F_{n+1}-1}{F_{n+1}} \times \frac{F_{n}-1}{F_{n}} \\
& \leq \frac{F_{n}-1}{F_{n}} \times \frac{F_{n+1}-1}{F_{n+1}} \times \frac{F_{n+2}-1}{F_{n+2}} \times \frac{F_{n+1}-1}{F_{n+1}} \leq \cdots \leq \prod_{k=n}^{\infty} \frac{F_{k}-1}{F_{k}} .
\end{aligned}
$$

Using Lemma 1 (2), we have

$$
\begin{aligned}
& \frac{F_{n-2}}{F_{n-2}+1}>\frac{F_{n}-1}{F_{n}} \times \frac{F_{n-1}}{F_{n-1}+1}>\frac{F_{n}-1}{F_{n}} \times \frac{F_{n+1}-1}{F_{n+1}} \times \frac{F_{n}}{F_{n}+1} \\
& >\frac{F_{n}-1}{F_{n}} \times \frac{F_{n+1}-1}{F_{n+1}} \times \frac{F_{n+2}-1}{F_{n+2}} \times \frac{F_{n+1}}{F_{n+1}+1}>\cdots>\prod_{k=n}^{\infty} \frac{F_{k}-1}{F_{k}} .
\end{aligned}
$$

Therefore,

$$
1-\frac{1}{F_{n-2}} \leq \prod_{k=n}^{\infty}\left(1-\frac{1}{F_{k}}\right)<1-\frac{1}{F_{n-2}+1} .
$$

That is,

$$
F_{n-2} \leq\left(1-\prod_{k=n}^{\infty}\left(1-\frac{1}{F_{k}}\right)\right)^{-1}<F_{n-2}+1 .
$$

Thus, for $n \geq 3$, we obtain

$$
\left\lfloor\left(1-\prod_{k=n}^{\infty}\left(1-\frac{1}{F_{k}}\right)\right)^{-1}\right\rfloor=F_{n-2}
$$

(ii) Case 1. $n \geq 3$ is odd. Using Lemma 1 (3) and (4), we obtain the following inequality in the same manner as (i):

$$
\frac{F_{n} F_{n-1}-1}{F_{n} F_{n-1}}<\prod_{k=n}^{\infty} \frac{F_{k}^{2}-1}{F_{k}^{2}}<\frac{F_{n} F_{n-1}}{F_{n} F_{n-1}+1} .
$$

Therefore,

$$
1-\frac{1}{F_{n} F_{n-1}}<\prod_{k=n}^{\infty}\left(1-\frac{1}{F_{k}^{2}}\right)<1-\frac{1}{F_{n} F_{n-1}+1} .
$$

That is,

$$
F_{n} F_{n-1}<\left(1-\prod_{k=n}^{\infty}\left(1-\frac{1}{F_{k}^{2}}\right)\right)^{-1}<F_{n} F_{n-1}+1
$$

Case 2. $n \geq 4$ is even. Using Lemma 1 (5) and (6), we obtain the following inequality in the same manner as (i):

$$
\frac{F_{n} F_{n-1}-2}{F_{n} F_{n-1}-1}<\prod_{k=n}^{\infty} \frac{F_{k}^{2}-1}{F_{k}^{2}}<\frac{F_{n} F_{n-1}-1}{F_{n} F_{n-1}}
$$

Therefore,

$$
1-\frac{1}{F_{n} F_{n-1}-1}<\prod_{k=n}^{\infty}\left(1-\frac{1}{F_{k}^{2}}\right)<1-\frac{1}{F_{n} F_{n-1}} .
$$

That is,

$$
F_{n} F_{n-1}-1<\left(1-\prod_{k=n}^{\infty}\left(1-\frac{1}{F_{k}^{2}}\right)\right)^{-1}<F_{n} F_{n-1}
$$

Therefore, we obtain

$$
\left\lfloor\left(1-\prod_{k=n}^{\infty}\left(1-\frac{1}{F_{k}^{2}}\right)\right)^{-1}\right\rfloor=\left\{\begin{array}{cccc}
F_{n} F_{n-1} & \text { if } n \equiv 1 & (\bmod 2), & n \geq 3 \\
F_{n} F_{n-1}-1 & \text { if } & n \equiv 1 & (\bmod 2), \\
n \geq 4
\end{array}\right.
$$

Proposer's note: For $m \geq 2$ and $n \geq 2$, we obtain the following identity in the same manner:

$$
\left\lfloor\left(1-\prod_{k=n}^{\infty}\left(1-\frac{1}{F_{m k}}\right)\right)^{-1}\right\rfloor=F_{m n}-F_{m(n-1)}
$$

Also solved by Paul S. Bruckman.

On a Power Series with Binomial Coefficients

H-735 Proposed by Paul S. Bruckman, BC.

(Vol. 51, No. 2, May 2013)
Let $F_{m}(x)=\sum_{n=0}^{\infty}\binom{2 n+m}{n} x^{n}$, where m is any real number and $|x|<1 / 4$. Also let $\theta(x)=(1-4 x)^{1 / 2}$. For brevity, write $F_{m}=F_{m}(x), \theta=\theta(x)$. Prove the following:
(a) $F_{0}=\frac{1}{\theta}, F_{1}=\frac{(1-\theta)}{2 x \theta}$;
(b) for all real $m, \frac{F_{m}}{F_{0}}=\left(\frac{F_{1}}{F_{0}}\right)^{m}$;
(c) for all real $m, \sum_{k=0}^{n}\binom{2 k+m}{k}\binom{2 n-2 k-m}{n-k}=4^{n}, \quad n=0,1,2, \ldots$.

Solution by Ángel Plaza, Gran Canaria, Spain.

(a) $F_{0}=\frac{1}{\theta}$ is $\sum_{n=0}^{\infty}\binom{2 n}{n} x^{n}=\frac{1}{\sqrt{1-4 x}}$, which is given as identity (2.5.1) in [1].
$F_{1}=\frac{(1-\theta)}{2 x \theta}$ is equivalent to $\sum_{n=0}^{\infty}\binom{2 n+1}{n} x^{n}=\frac{1-\sqrt{1-4 x}}{2 x \sqrt{1-4 x}}$. Then

$$
\begin{aligned}
\text { RHS } & =\frac{1}{2 x}\left(\frac{1}{\sqrt{1-4 x}}-1\right)=\frac{1}{2 x} \sum_{n=1}^{\infty}\binom{2 n}{n} x^{n}=\frac{1}{2} \sum_{n=1}^{\infty}\binom{2 n}{n} x^{n-1} \\
& =\frac{1}{2} \sum_{n=0}^{\infty}\binom{2 n+2}{n+1} x^{n}=\sum_{n=0}^{\infty} \frac{\binom{2 n+1}{n+1}+\binom{2 n+1}{n}}{2} x^{n} \\
& =\sum_{n=0}^{\infty}\binom{2 n+1}{n} x^{n}=\text { LHS } .
\end{aligned}
$$

(b) By (a), we have to show that for all $m, F_{m}=F_{0}\left(\frac{F_{1}}{F_{0}}\right)^{m}$, where $F_{0}=\frac{1}{\sqrt{1-4 x}}, \frac{F_{1}}{F_{0}}=$ $\frac{1-\sqrt{1-4 x}}{2 x}$. That is

$$
\sum_{n=0}^{\infty}\binom{2 n+m}{n} x^{n}=\frac{1}{\sqrt{1-4 x}}\left(\frac{1-\sqrt{1-4 x}}{2 x}\right)^{m}
$$

which is identity (2.5.15) in [1].
(c) Let $A(x)$ be the generating function of the LHS. That is

$$
\begin{aligned}
A(x) & =\sum_{n \geq 0} x^{n} \sum_{k=0}^{n}\binom{2 k+m}{k}\binom{2 n-2 k-m}{n-k} \\
& =\sum_{k \geq 0}\binom{2 k+m}{k} x^{k} \sum_{n-k \geq 0}\binom{2 n-2 k-m}{n-k} x^{n-k} \\
& =\frac{1}{\sqrt{1-4 x}}\left(\frac{1-\sqrt{1-4 x}}{2 x}\right)^{m} \frac{1}{\sqrt{1-4 x}}\left(\frac{1-\sqrt{1-4 x}}{2 x}\right)^{-m}, \\
& =\frac{1}{1-4 x},
\end{aligned}
$$

which is precisely the generating function of the RHS, 4^{n}. Note that we have used the identity (2.5.15) in [1].

References

[1] H. S. Wilf, Generatingfunctionology, 2nd. edition, (1992).

Also solved by Kenneth B. Davenport and the proposer.

On the Sum of the Cubes of the Tribonacci Numbers

H-736 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

(Vol. 51, No. 2, May 2013)
The Tribonacci numbers T_{n} satisfy $T_{0}=0, T_{1}=T_{2}=1, T_{n+3}=T_{n+2}+T_{n+1}+T_{n}$ for $n \geq 0$. Find an explicit formula for the sum $\sum_{k=1}^{n} T_{k}^{3}$.

Solution by the proposer.

Let $S_{n}=\sum_{k=1}^{n} T_{k}^{3}$. We need the following lemma.
Lemma 2. We have
(i) $\sum_{k=1}^{n}\left(T_{k}^{2} T_{k+1}+T_{k} T_{k+1}^{2}\right)=T_{n} T_{n+1} T_{n+2} ;$
(ii) $\sum_{k=1}^{n}\left(T_{k+1}^{2} T_{k+2}+T_{k+1} T_{k+2}^{2}\right)=T_{n+1} T_{n+2} T_{n+3}-2$;
(iii) $\sum_{k=1}^{n} T_{k}^{2} T_{k+2}=S_{n}+T_{n} T_{n+1} T_{n+2}-T_{n} T_{n+1}^{2}$;
(iv) $-6 \sum_{k=1}^{n} T_{k+1} T_{k+2}^{2}=2 S_{n}+A_{n}$,
where

$$
A_{n}=-T_{n+2}^{3}-T_{n}^{3}-3 T_{n} T_{n+1}^{2}-3 T_{n}^{2} T_{n+1}-3 T_{n+1} T_{n+2}^{2}-3 T_{n+1}^{2} T_{n+2}+7
$$

Proof. (i) We have

$$
\begin{aligned}
& \sum_{k=1}^{n}\left(T_{k}^{2} T_{k+1}+T_{k} T_{k+1}^{2}\right)=\sum_{k=1}^{n} T_{k} T_{k+1}\left(T_{k}+T_{k+1}\right)=\sum_{k=1}^{n} T_{k} T_{k+1}\left(T_{k+2}-T_{k-1}\right) \\
& =\sum_{k=1}^{n}\left(T_{k} T_{k+1} T_{k+2}-T_{k-1} T_{k} T_{k+1}\right)=T_{n} T_{n+1} T_{n+2}
\end{aligned}
$$

(ii) We have

$$
\left.\sum_{k=1}^{n}\left(T_{k+1}^{2} T_{k+2}+T_{k+1} T_{k+2}^{2}\right)=\sum_{k=2}^{n}\left(T_{k}^{2} T_{k+1}+T_{k} T_{k+1}^{2}\right)=T_{n+1} T_{n+2} T_{n+3}-2, \quad \text { (by (i) }\right)
$$

(iii) We have

$$
\begin{aligned}
& \sum_{k=1}^{n} T_{k}^{2} T_{k+2}=\sum_{k=1}^{n} T_{k}^{2}\left(T_{k+1}+T_{k}+T_{k-1}\right)=\sum_{k=1}^{n} T_{k}^{3}+\sum_{k=1}^{n}\left(T_{k}^{2} T_{k+1}+T_{k-1} T_{k}^{2}\right) \\
& =S_{n}+\sum_{k=1}^{n}\left(T_{k}^{2} T_{k+1}+T_{k} T_{k+1}^{2}\right)-T_{n} T_{n+1}^{2}=S_{n}+T_{n} T_{n+1} T_{n+2}-T_{n} T_{n+1}^{2},
\end{aligned}
$$

(iv) We have

$$
\begin{aligned}
0 & =\sum_{k=1}^{n}\left(\left(T_{k}+T_{k-1}\right)^{3}-\left(T_{k+2}-T_{k+1}\right)^{3}\right) \\
& =3 \sum_{k=1}^{n}\left(T_{k+2}^{2} T_{k+1}+T_{k}^{2} T_{k-1}\right)-3 \sum_{k=1}^{n}\left(T_{k+2} T_{k+1}^{2}-T_{k} T_{k-1}^{2}\right)+\sum_{k=1}^{n}\left(T_{k}^{3}+T_{k-1}^{3}-T_{k+2}^{3}+T_{k+1}^{3}\right) \\
& =6 \sum_{k=1}^{n} T_{k+2}^{2} T_{k+1}+2 S_{n}+A_{n} .
\end{aligned}
$$

Let $x=T_{k}, y=T_{k+1}, z=T_{k+2}$. We have

$$
\begin{gather*}
x^{3}+y^{3}+z^{3}+3 x^{2} y+3 x y^{2}+3 x^{2} z+3 x z^{2}+3 y^{2} z+3 y z^{2}+6 x y z=(x+y+z)^{3} \tag{1}\\
x^{3}+2 y^{3}+z^{3}+2 x^{2} y+2 x y^{2}+x^{2} z-x z^{2}-2 y z^{2}-2 x y z=1 \tag{2}
\end{gather*}
$$

(see [1]). Multiplying (2) by 3 and adding the resulting identity to (1), we get

$$
4 x^{3}+7 y^{3}+4 z^{3}+9 x^{2} y+9 x y^{2}+6 x^{2} z+3 y^{2} z-3 y z^{2}=T_{k+3}^{3}+3
$$

From the above identity, we have

$$
\begin{aligned}
& \sum_{k=1}^{n}\left(4 T_{k}^{3}+7 T_{k+1}^{3}+4 T_{k+2}^{3}-T_{k+3}^{3}\right)+9 \sum_{k=1}^{n}\left(T_{k}^{2} T_{k+1}+T_{k} T_{k+1}^{2}\right) \\
& +6 \sum_{k=1}^{n} T_{k}^{2} T_{k+2}+3 \sum_{k=1}^{n}\left(T_{k+1}^{2} T_{k+2}+T_{k+1} T_{k+2}^{2}\right)-6 \sum_{k=1}^{n} T_{k+1} T_{k+2}^{2}=3 n
\end{aligned}
$$

Using Lemma 2 (i), (ii), (iii) and (iv), we have

$$
\begin{align*}
& \sum_{k=1}^{n}\left(12 T_{k}^{3}+7 T_{k+1}^{3}+4 T_{k+2}^{3}-T_{k+3}^{3}\right) \\
& +15 T_{n} T_{n+1} T_{n+2}+3 T_{n+1} T_{n+2} T_{n+3}-6 T_{n} T_{n+1}^{2}+A_{n}-6=3 n \tag{3}
\end{align*}
$$

Here,

$$
\sum_{k=1}^{n}\left(12 T_{k}^{3}+7 T_{k+1}^{3}+4 T_{k+2}^{3}-T_{k+3}^{3}\right)=22 S_{n}+10 T_{n+1}^{3}+3 T_{n+2}^{3}-T_{n+3}^{3}-5 .
$$

Therefore, (3) is

$$
\begin{aligned}
22 S_{n} & =T_{n+3}^{3}-2 T_{n+2}^{3}-10 T_{n+1}^{3}+T_{n}^{3}+9 T_{n} T_{n+1}^{2}+3 T_{n}^{2} T_{n+1} \\
& -15 T_{n} T_{n+1} T_{n+2}-3 T_{n+1} T_{n+2}\left(T_{n+3}-T_{n+2}-T_{n+1}\right)+3 n+4 .
\end{aligned}
$$

Since

$$
--3 T_{n+1} T_{n+2}\left(T_{n+3}-T_{n+2}-T_{n+1}\right)=-3 T_{n} T_{n+1} T_{n+2},
$$

we obtain

$$
S_{n}=\frac{1}{22}\left(T_{n+3}^{3}-2 T_{n+2}^{3}-10 T_{n+1}^{3}+T_{n}^{3}+9 T_{n} T_{n+1}^{2}+3 T_{n}^{2} T_{n+1}-18 T_{n} T_{n+1} T_{n+2}+3 n+4\right) .
$$

References

[1] M. Elia, Derived sequences, the tribonacci recurrence and cubic forms, The Fibonacci Quarterly $\mathbf{3 9 . 2}$ (2001), 107-115.

A Lucas Type Congruence with Fibonomials

H-737 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

(Vol. 51, No. 2, May 2013)
Let $\binom{n}{k}_{F}$ denote the Fibonomial coefficient. For an odd prime p and a positive integer n, prove that

$$
\binom{n p-1}{p-1}_{F} \equiv(-1)^{\frac{(n-1)(p-1)}{2}} \quad\left(\bmod F_{p}^{2} L_{p}\right) .
$$

Solution by Christian Ballot, Caen, France.

With $m:=n-1$, define the rational polynomial

$$
P(x):=\prod_{i=1}^{p-1}\left(x+\frac{F_{m p}}{L_{m p}} \frac{L_{i}}{F_{i}}\right) .
$$

Expanding $P(x)$ yields

$$
P(x)=x^{p-1}+\frac{F_{m p}}{L_{m p}} \sum_{i=1}^{p-1} \frac{L_{i}}{F_{i}} x^{p-2}+\frac{F_{m p}^{2}}{L_{m p}^{2}} \sum_{0<i<j<p} \frac{L_{i} L_{j}}{F_{i} F_{j}} x^{p-3}+\cdots+\frac{F_{m p}^{p-1}}{L_{m p}^{p-1}} \prod_{i=1}^{p-1} \frac{L_{i}}{F_{i}} .
$$

All coefficients, except that of x^{p-1}, are $0\left(\bmod F_{p}^{2}\right)$. Indeed, $F_{m p}^{k}$ is divisible by F_{p}^{2} for $k \geq 2$ and F_{p} is prime to $L_{m p} \prod_{i=1}^{p-1} F_{i}$. Moreover, $S:=\sum_{i=1}^{p-1} \frac{L_{i}}{F_{i}} \equiv 0\left(\bmod F_{p}\right)$ because

$$
2 S=\sum_{i=1}^{p-1}\left(\frac{L_{i}}{F_{i}}+\frac{L_{p-i}}{F_{p-i}}\right)=\sum_{i=1}^{p-1} \frac{F_{p-i} L_{i}+F_{i} L_{p-i}}{F_{i} F_{p-i}}=\sum_{i=1}^{p-1} \frac{2 F_{p}}{F_{i} F_{p-i}} .
$$

All forthcoming sums and products are for indices i running from 1 to $p-1$. As

$$
2 F_{i+j}=F_{i} L_{j}+F_{j} L_{i}
$$

we find that

$$
2^{p-1} \prod F_{m p+i}=\prod 2 F_{m p+i}=\prod\left(F_{m p} L_{i}+L_{m p} F_{i}\right)=L_{m p}^{p-1} P(1) \prod F_{i} .
$$

Therefore,

$$
\binom{n p-1}{p-1}_{F}=\frac{\prod F_{m p+i}}{\prod F_{i}}=\left(\frac{L_{m p}}{2}\right)^{p-1} P(1) .
$$

Since $L_{k}^{2}-5 F_{k}^{2}=4(-1)^{k}$, we see that $\left(L_{m p} / 2\right)^{p-1} \equiv\left((-1)^{m}\right)^{\frac{p-1}{2}}\left(\bmod F_{p}^{2}\right)$. To establish the congruences modulo L_{p}, note that L_{p} divides $L_{m p}$ if and only if m is odd and L_{p} divides $F_{m p}$ if m is even. Thus, all coefficients of $\left(L_{m p} / 2\right)^{p-1} P(x)$ are $0\left(\bmod L_{p}\right)$ except possibly and respectively the constant term $\left(F_{m p} / 2\right)^{p-1} \prod L_{i} / F_{i}$, if m is odd, and the leading term $\left(L_{m p} / 2\right)^{p-1}$, if m is even. If m is odd, then, as $2(-1)^{i} L_{p-i}=L_{p} L_{i}-5 F_{p} F_{i}$, we find that

$$
\prod \frac{L_{i}}{F_{i}}=\prod \frac{L_{p-i}}{F_{i}}=\left(2^{p-1}(-1)^{\Sigma i}\right)^{-1} \prod \frac{2(-1)^{i} L_{p-i}}{F_{i}} \equiv 2^{-p+1}(-1)^{\frac{p-1}{2}} \prod\left(-5 F_{p}\right) \quad\left(\bmod L_{p}\right) .
$$

Hence,

$$
(-1)^{\frac{p-1}{2}}\left(F_{m p} / 2\right)^{p-1} \prod \frac{L_{i}}{F_{i}} \equiv\left(-5 F_{m p}^{2} / 4\right)^{\frac{p-1}{2}}\left(-5 F_{p}^{2} / 4\right)^{\frac{p-1}{2}} \equiv\left((-1)^{m}\right)^{\frac{p-1}{2}}(-1)^{\frac{p-1}{2}} \quad\left(\bmod L_{p}\right),
$$

which yields the congruence. If m is even, then a simple induction using the identity

$$
L_{2 k}=L_{k}^{2}-2(-1)^{k}
$$

gives that $L_{m p} \equiv 2\left(\bmod L_{p}\right)$. Thus, $\left(L_{m p} / 2\right)^{p-1} \equiv 1\left(\bmod L_{p}\right)$, which, as F_{p} and L_{p} are coprime, fully lands the H-737 problem.

Also solved by the proposer.

Errata: In problem H-763, in the denominator of the RHS of (i), " $n+2$)" should be " $(n+1)$ " and in the denominator RHS of (iv), " $n^{2}(n+1)^{2}$ ", should be " $n^{3}(n+1)^{3}$ ".

Late Acknowledgement: Kenneth B. Davenport solved H-733.

