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PROBLEMS PROPOSED IN THIS ISSUE

H-863 Proposed by Kenneth B. Davenport, Dallas, PA
Show that

¢(2n+1) In 2 ¢(2 3
=1-7-— and =In(27) — =
D TR 7T Z n+1 = In(2m) =3,
n>1
where ((n) is the Riemann zeta function.
H-864 Proposed by Hideyuki Ohtsuka, Saitama, Japan

The Pell numbers {P, } >0 satisfy Py =0, P, =1, and P,, = 2P, + P, for n > 2. Prove
that

o0
Z tan"! ! tan™! ; = il tan~! L
n=1 \/ipn ﬂPn+1 4 2\/§

H-865 Proposed by D. M. Batinetu-Giurgiu, Bucharest, Romania, and Neculai
Stanciu, Buzau, Romania
Let {zp}n>0 be the sequence given by o =0, x; = 1, and

Tnyo = (2n 4 5) i1 — (> +4n+3)z, for n>0.
Find

tim (/P Losiwnst — /Falntn) .

n—o0

H-866 Proposed by Angel Plaza, Gran Canaria, Spain
Let a, denote the nth number in the sequence given by an+1 = an + ap—1 for n > 1 with
initial values a¢g = a — 1 and a; = 1 with some a > 1. Prove that

“~ 2(a ak) azy, — aj,
Z Rl <lnap4 < Z ktl Tk

— k1t ag 2ag41ak
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H-867 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Let a, b, ¢, d be even positive integers with a + b = ¢ 4+ d. Prove that
a b c d
Ly L, Ly L,
+ = + .
; Fy Lo ; LiFyia ; FyLj+a ; LiFyyc

SOLUTIONS

A sum of arctangents

H-829 Proposed by Angel Plaza and Francisco Perdomo, Gran Canaria, Spain
(Vol. 56, No. 4, November 2018)

For any positive integer k, let {F}, , }n>0 be the sequence defined by Fj, o =0, Fj, 1 = 1, and
Finy1 = kFy + F p—q for n > 1. Find the limit

VRIS KL,
% Zarctan ( kntl .
=1

lim 5
LA Fren By 1 Frent2

k—o0

Solution by Albert Stadler, Herrliberg, Switzerland

We note that
1 _ 1
FronFrni1 Feni1Frni2
1
Fk,nF]S_’n+1Fk,n+2

arctan ————  — arctan ——— = arctan
Fk,an,n+l Fk,n—i—le,n—l—Q

Fk,n—i—l (Fk,n+2 - Fk,n)
1+ Fk,nF]?,n_i_]Fk,n-l—Q

2
ka,n—i—l

= arctan

= arctan 5 .
LA Frn By 1 Freint2
So,
00 kF2
Z arctan k;"“ = arctan ——— = arctan —,
ot L+ FynFy 1 Frnt2 Fi1Fy2
and
ok VEE A kFY, 4  k+VEE+4 1
lim ——M— Z arctan 5 = lim ————arctan—- =1
k—o00 2 ot 1+ Fk,an7n+1Fk,n+2 k—o0 2 k

Also solved by Brian Bradie, Dmitry Fleischman, Robert Frontczak, and the
proposers.
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A sum divisible by four consecutive Fibonacci numbers

H-830 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 56, No. 4, November 2018)
For an integer n > 1, prove that

n
12 (FpFrs1Fry2)? =0 (mod FpFp1ForoFnys).
k=1

Solution by the proposer
Using FoipFove = FoFoqpic + (—1)°FpFe (see [3] (20a)), we have

FyFyio = Fp 1Fpy3+ (—1)k71F1F3 = Fyp_1Fpi0 — 2(—1)k (1)
We have
n n
> (FeFisiFri2)® = D (FeFiy1Fiya) X (FiFipz)
k=1 k=1
n
= Y Pl Frpo(FraFrps —2(-1)F) by (1)
k=1
n n
= Y P FoFi FrpoFrys —2) (D) FFEL Frpo. (2)
k=1 k=1

From identity (2.1) in [1], we have
n
1
D FrorFiF i FraFiors = JFao1 FoFoi1 Frgo Foys P, (3)
k=1
From identity (2.17) in [2], we have
n
1
Z(_l)kaFlg+1Fk+2 = g(_l)nFnFn+1Fn+2Fn+3' (4)
k=1
By (2), (3), and (4), we have
n
12) (FyFes1Fit2)? = FpuFpi1FnioFi3(3F_1Fnia —8(—1)")
k=1
= 0 (mOd FnFn+1Fn+2Fn+3)-
[1] R. S. Melham, Sums of certain products of Fibonacci and Lucas numbers, The Fibonacci
Quarterly, 37.3 (1999), 248-251.
[2] R. S. Melham, Sums of certain products of Fibonacci and Lucas numbers, II, The Fibonacci

Quarterly 38.1 (2000), 3-7.
[3] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Dover, 2008.

Also solved by Kenneth B. Davenport and Raphael Schumacher.
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Proth primality test using Fibonacci numbers

H-831 Proposed by Predrag Terzi¢, Podgorica, Montenegro
(Vol. 56, No. 4, November 2018)

Let Pj(z) =277 ((z — Va2 — 4)7 + (z + V22 — 4)7), where j and x are nonnegative integers.
Let N = k2™ + 1 with k odd, k < 2™, and m > 2. Let Sy = Pi(F,) and S; = S? | — 2 for
i > 1. Prove the following statement: If there exists F;, for which S;,—2 = 0 (mod N), then
N is prime.

No solution to this problem was received. The proposer pointed out [1], where some partic-
ular cases are treated (the cases n =4,5,6 and k and m in various residue classes).

[1] P. Terzié, Primality tests for specific classes of N = k2™ £1, arXiv: 1506.03444v1(2015).

Closed form expressions for sums with Fibonacci and Lucas numbers

H-832 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 56, No. 4, November 2018)
For positive integers n and r, find a closed form expression for

() Sy Fik Lok
(i) > k= F2FkF2Lk-‘

Solution by the proposer
We use Catalan’s identity
F2 (—1)""™F2 = FyymFrm. (5)

n

(i) We have

n
Py F3Lu = Z i (Fokr Foy)
k=1

ZF k+1) Fr?(kq)) by (5)

= > (FEkFE(kH) - Ff(k—nFer)

Thus, we obtain

3
Rl
&
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(ii) We have

L n

k=1 k=1
n
— 2 2 2
- ZFQFk(FFk-‘rLk _FFk—Lk)
k=1

n
= > Fip (Fip ., — F?op,_,) (since Ly = Fy_y + Frp1)
k=1
n

— E 2 2 2 2 _ 2 2
- (FQFkFQFk+1 - FQFk_lFQFk) - F2F,LF2Fn+1'
k=1

Also solved by Brian Bradie, Dmitry Fleischman, Robert Frontczak, and Raphael
Schumacher.

Closed form for a sum of Tribonacci Lucas numbers

H-833 Proposed by Robert Frontczak, Stuttgart, Germany
(Vol. 57, No. 1, February 2019)
The Tribonacci-Lucas numbers {K,},>0 satisfy Ko = 3, K; = 1, Ky = 3, and K,, =

K, 1+ K, 2+ K,_3 for n > 3. Prove that for any n > 1

n

1
> KyjKaj = 7 (K20 + Kont1)? = 16).
j=1

Solution by Brian Bradie, Newport News, VA

Observe
(Ko9j + Koji1)? — (Kaj—2 + Koj—1)? = (Kaj + Kaji1 + Koj_o + Kaj_1)
X (Kyj+ Kojy1 — Koj_o — Koj_1)
= (2Ky541)(2K2)) = 4K K211
Therefore,
n 1 n
> KojKoj = 7 2 (K2 + Kji1)® = (Kgj—2 + Kaj1)%)
p =1
1
= Z((KQn + Kont1)? — (Ko + K1)?)
1
= Z((Kzn + Kont1)? — 16).

Also solved by Kenneth B. Davenport, Wei-Kai Lai and John Risher (jointly),

Hideyuki Ohtsuka, Angel Plaza, Raphael Schumacher, David Terr, and the pro-
poser.

Late acknowledgement: Albert Stadler has solved Advanced Problem H-825.
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