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PROBLEMS PROPOSED IN THIS ISSUE

H-677 Proposed by N. Gauthier, Kingston, ON, Canada
Let N ≥ 3 be an integer and define Q = b(N − 1)/2c. Find a closed form expression for

the following sum

S(N) =

Q∑

k=1

k sin((2k + 1)π/N)

sin2(kπ/N) sin2((k + 1)π/N)
.

H-678 Proposed by Mohammad K. Azarian, Evansville, IN

(a) Show that there is a unique Fibonacci number F such that the inequalities

x1 + x2 + · · ·+ x70 < F and y1 + y2 + · · ·+ y18 < F

have the same number of positive integer solutions.
(b) Show that it is impossible to find three consecutive Fibonacci numbers Fk, Fk+1, Fk+2

such that the inequalities

x1 + x2 + · · ·+ xFk
< Fk+2 and y1 + y2 + · · ·+ yFk+1

< Fk+2

have the same number of positive integer solutions.

H-679 Proposed by N. Gauthier, Kingston, ON, Canada
For integers a ≥ 1 and n ≥ 0 consider the generalized Fibonacci sequence {fn}n given by

f0 = 0, f1 = 1 and fn+2 = afn+1 + fn for n ≥ 0. Let ∆ =
√

a2 + 4 and α = (a + ∆)/2, β =
(a−∆)/2 be the roots of the characteristic equation of the recurrence. Consider the sequence
{Sn}n≥4 of nested radical sums

An =

√
f4 +

√
f5 + · · ·+

√
fn.

Prove that

Sn <
α6+p(n)

∆1+q(n)
,
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where p(n) and q(n) are to be determined, and find an upper bound for the limit S =
limn→∞ Sn.

H-680 Proposed by N. Gauthier, Kingston, ON, Canada
For x 6= 0 an indeterminate and for an integer n ≥ 0, consider the generalized Fibonacci

and Lucas polynomials {fn}n and {ln}n, respectively, given by the following recurrences

fn+2 = xfn+1 + fn n ≥ 0, where f0 = 0, f1 = 1;

ln+2 = xln+1 + ln n ≥ 0, where l0 = 2, l1 = x.

Find closed-form expressions for the following sums:

(a)
m∑

k=1

(−1)kn 1

f(k+1)nfkn

, m, n ≥ 1;

(b)
m∑

k=0

(−1)kn 1

l(k+1)nlkn

, m, n ≥ 0;

(c)
m∑

k=1

(−1)kn f(2k+1)n

f 2
(k+1)nf

2
kn

, m, n ≥ 1;

(d)
m∑

k=0

(−1)kn f(2k+1)n

l2(k+1)nl
2
kn

, m, n ≥ 0;

(e)
m∑

k=0

(−1)kn
f(2k+1)n[f 2

(2k+1)n + f 2
n]

l4(k+1)nl
4
kn

, m, n ≥ 0.

SOLUTIONS

Combinatorial Numbers and Powers of an Arithmetic Progression

H-659 Proposed by N. Gauthier, Kingston, ON, Canada
(Vol. 45, No. 3, August 2007)

Let m ≥ 0, n ≥ 0, a, b, q and s be integers. Also let {c(m, k) = c(m, k; n, a, b) : 0 ≤
k ≤ m} represent the set of coefficients that are given by the following recurrence, with the
initial value and boundary conditions shown:

c(m + 1, k) = (b + ka)c(m, k) + (n− k + 1)ac(m, k − 1);

c(0, 0) = 1; c(m,−1) = c(m,m + 1) = 0.

Also let Fn+2 = uFn+1 + Fn and Ln+2 = uLn+1 + Ln be the recurrences for the generalized
Fibonacci and Lucas polynomials of order n, Fn = Fn(u) and Ln = Ln(u), respectively,
where F0 = 0, F1 = 1, and L0 = 2, L1 = u. Prove that the following identities hold:

a)
∑n

r=0

(
n
r

)
(ar + b)m =

∑m
k=0 2n−kc(m, k);

b)
∑n

r=0(−1)qa(n−r)
(

n
r

)
(ar + b)mF2qar+s =

∑m
k=0 c(m, k)Ln−k

qa Fqa(n+k)+s.

Solution by the proposer

Consider the following function of the variable x:

S0(x; n, a, b) = xb(1 + xa)n =
n∑

r=0

(
n

r

)
xar+b. (1)

NOVEMBER 2008/2009 375



THE FIBONACCI QUARTERLY

The right-hand side above follows from a binomial expansion. For simplicity, let S0(x) stand

for S0(x; n, a, b) and consider the repeated action of the differential operator, D = x
d

dx
, on

that function. From (1), we see that for a nonnegative integer m one has

Sm(x) = DmS0(x) =
n∑

r=0

(
n

r

)
(ar + b)mxar+b. (2)

Also, again from (1), one has that

Sm(x) = Dm[xb(1 + xa)n]. (3)

To develop this latter expression, consider a few terms to see a pattern.

S1(x) = D[xb(1 + xa)n] = bxb(1 + xa)n + naxa+b(1 + xa)n−1;

S2(x) = D2S0(x) = DS1(x)

= b2xb(1 + xa)n + an(a + 2b)xa+b(1 + xa)n−1 + n(n− 1)a2x2a+b(1 + xa)n−2.

For an arbitrary nonnegative integer m we have that

Sm(x) =
m∑

k=0

c(m, k)xka+b(1 + xa)n−k. (4)

We now determine a recurrence for the unknown coefficients {c(m, k)}, as follows. First
replace m by m + 1 in (4) and get that

Sm+1(x) =
m+1∑

k=0

c(m + 1, k)xka+b(1 + xa)n−k. (5)

Also, by (3) and (4), we have that

Sm+1(x) = DSm(x)

= D

m∑

k=0

c(m, k)xka+b(1 + xa)n−k

=
m∑

k=0

c(m, k)[(ka + b)xka+b(1 + xa)n−k + (n− k)ax(k+1)a+b(1 + xa)n−k−1]

=
m+1∑

k=0

[(ka + b)c(m, k) + (n− k + 1)ac(m, k − 1)]xka+b(1 + xa)n−k. (6)

The definitions c(m,−1) = 0 and c(m,m+1) = 0 make it possible to readjust the limits in the
sums in the third line of (6) above as shown in the fourth line of (6) above. The recurrence
for the coefficients we seek is thus given by equating the coefficient of xka+b(1+xa)n−k in the
right-hand of (5) to that of the same term in the last line of (6). The resulting recurrence
is as given in the problem statement.

To get identity a), set x = 1 in the right-hand side of (2) and in the right-hand side of (4).
Then equate the results to get identity a).

To get identity b), set x = αq/βq = (−1)qα2q, where α = α(u) = (u +
√

u2 + 1)/2 and
β = β(u) = (u−√u2 + 1)/2 are the roots of the characteristic equation for the generalized
Fibonacci and Lucas polynomials; namely, the numbers w such that w2 − uw − 1 = 0.
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Inserting the given substitution in (2) and (4) and then equating the above results gives,
upon multiplication of the entire equation by αp, with p an integer, that

n∑
r=0

(
n

r

)
(ar + b)m(−α2)q(ar+b)αp =

m∑

k=0

c(m, k)(−α2)q(ka+b)(1 + αqa/βqa)n−kαp

=
m∑

k=0

c(m, k)(−α2)q(ka+b)Ln−k
qa (−α)qa(n−k)αp

=
m∑

k=0

c(m, k)(−1)q(na+b)Ln−k
qa αq(ka+2b+na)+p.

Next change α to β in this expression, then subtract the resulting expression from the one
above and divide both sides of the resulting equation by (α − β). Identity b) follows upon
eliminating a redundant sign, (−1)qb, on both sides of the resulting equality, then transferring
(−1)qna to the left-hand side and setting s := 2qb + p.

Also solved by Paul Bruckman and G. C. Greubel.

On Odd Perfect Numbers

H-661 Proposed by J. López González, Madrid, Spain and F. Luca, Mexico
(Vol. 45, No. 4, November 2007)

Let φ(n) and σ(n) be the Euler function of n and the sum of divisors function of n,
respectively.

(i) If n is odd perfect show that 0.4601 < φ(n)/n < 0.5.
(ii) Show that n is odd perfect if and only if nσ(2n) = σ(n)(n + σ(n)).

Solution by the proposers

(i) First of all, it is known that

1 >
φ(n)σ(n)

n2
>

6

π2
. (7)

Let us recall a proof of it. If n = pa is a prime power then

φ(pa)σ(pa)

p2a
=

(
1− 1

p

)(
1 +

1

p
+ · · ·+ 1

pa

)
.

The above expression is at least
(

1− 1

p

)(
1 +

1

p

)
= 1− 1

p2
and less than

(
1− 1

p

) (
1 +

1

p
+

1

p2
+ · · ·

)
= 1.

Since φ(n), σ(n) and n are all three multiplicative, so is φ(n)σ(n)/n2, so

1 >
φ(n)σ(n)

n2
≥

∏

p |n

(
1− 1

p2

)
>

∏
p≥2

(
1− 1

p2

)
=

1

ζ(2)
=

6

π2
.

Since σ(n) = 2n, the claimed upper bound on φ(n)/n follows. To get the lower bound, we
revisit the proof of the lower bound above on φ(n)σ(n)/n2 using more information about the
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arithmetic of the odd perfect number n. Since n is odd, the prime p = 2 does not divide n.
So, in fact, we see that

φ(n)σ(n)

n2
≥

∏
p≥3

(
1− 1

p2

)
=

4

3ζ(2)
=

8

π2
.

Still this does not take full advantage of the structure of odd perfect numbers. In fact, the
last bound only used the fact that n is odd and nothing else. A result due to Euler says that
if n is odd perfect then n = qm2, where q is prime with q ≡ 1 (mod 4). In conclusion, for
all prime factors p 6= q of n, we have pa | n for some a ≥ 2, and so

φ(pa)σ(pa)

p2a
=

(
1− 1

p

)(
1 +

1

p
+ · · ·+ 1

pa

)
≥

(
1− 1

p

)(
1 +

1

p
+

1

p2

)
≥

(
1− 1

p3

)
.

Thus, if all primes p dividing n appear at a power≥ 2, we then have, again by multiplicativity,

φ(n)σ(n)

n2
≥

∏
p≥3

(
1− 1

p3

)
=

8

7ζ(3)
.

However, this is not quite so since the prime q might happen to exactly divide n; i.e., q‖n,
but by Euler’s theorem this prime is unique and congruent to 1 (mod 4). The first such
possible prime is 5. Thus, if we replace the contribution of the prime p = 5 above (which is
1− 1/125 = 124/125) by the (smaller) amount 1− 1/25 = 24/25, then we get the inequality

φ(n)σ(n)

n2
≥ 8

7ζ(3)

125

124

24

25
=

240

217ζ(3)
,

valid for all odd perfect numbers n. Since ζ(3) = 1.2020569 . . ., we get that

240

217ζ(3)
= .92008 . . . .

Since σ(n) = 2n, we get that

φ(n)

n
>

120

217ζ(3)
= .46004 . . . .

(ii) Write n = 2am, where a ≥ 0 and m is odd. Then the given equation implies

2am(2a+2 − 1)σ(m) = (2a+1 − 1)σ(m)(2am + (2a+1 − 1)σ(m)),

which after simplification by σ(m) becomes

2a(2a+2 − 1)m = 2a(2a+1 − 1)m + (2a+1 − 1)2σ(m).

This gives

(2a+1 − 1)2σ(m) = m
[
2a(2a+2 − 1)− 2a(2a+1 − 1)

]
m = 22a+1m.

Thus,

σ(m) =
22a+1

(2a+1 − 1)2
m. (8)

One checks easily that if a ≥ 1, then (2a+1 − 1)2 = 22a+2 − 2a+2 + 1 > 22a+1, since this is
equivalent to 22a+2−22a+1 > 2a+2−1, or 22a+1 > 2a+2−1, which is implied by 2a+1 ≥ a+2,
which in turn is true since a ≥ 1. But in this case the factor 22a+1/(2a+1 − 1)2 appearing in
front of m in the right hand side of (8) is < 1, leading to the conclusion that σ(m) < m,
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which is certainly false. So the only chance is that a = 0, in which case 22a+1/(2a+1−1)2 = 2
and the relation (8) becomes σ(m) = 2m; i.e., m is perfect.

Part (ii) also solved by Paul S. Bruckman.

Factorials and Products of Differences of Triangular Numbers

H-662 Proposed by Rigoberto Flórez, Sumter, SC
(Vol. 45, No. 4, November 2007)

Let Tn = n(n + 1)/2 be the nth triangular number.
(i) If n ≥ 1, show that

n! = 2bn/2c
bn/2c−1∏

i=1

(Tb(n+1)/2c − Ti).

(ii) Suppose that T is equal to
∏k−1

i=0 (Tk−Ti) or
∏k−1

i=0 (Tk+1−Ti). Let p be the first prime
number greater than T . Is p− T always equal to one or to a prime number?

Solution of part (i) by the proposer

We first suppose that n = 2k. Let n! = 1 · 2 · 3 · · · (n− 2) · (n− 1) · n. First, we group the
first number with the last number in this product, then the second number with the second
to the last, and so on. In this way,

n! = (1 · n) · (2 · (n− 1)) · (3 · (n− 2)) · · ·
[n

2
·
[
n−

(n

2
− 1)

)]]

= (n) · (2n− 2) · (3n− 6) · · ·
(n

2
· n− n

2

(n

2
− 1

))

=
k∏

i=1

(i(2k)− i(i + 1)) =
k∏

i=1

(
i(2k)− 2

i∑
j=1

j

)
= 2k

k∏
i=1

i∑
j=1

(k − j)

= 2k

k−1∏
i=0

(
k(k + 1)

2
− i(i + 1)

2

)
= 2k

k−1∏
i=0

(Tk − Ti).

Suppose now that n = 2k + 1. So, n + 1 = 2(k + 1). By the previous analysis, we have that

(n + 1)! = 2k+1
∏k

i=0(Tk+1 − Ti). Therefore,

n! =
2k+1

n + 1

k∏
i=0

(Tk+1 − Ti) =
2k+1

2(k + 1)
(Tk+1 − Tk)

k−1∏
i=0

(Tk+1 − Ti)

=
2k+1

2(k + 1)

(
(k + 1)(k + 2)

2
− k(k + 1)

2

) k−1∏
i=0

(Tk+1 − Ti) = 2k

k−1∏
i=0

(Tk+1 − Ti).

Part (i) also solved by Paul S. Bruckman. No solution to Part (ii) was received.

Fibonacci Numbers and Trigonometric Functions

H-663 Proposed by Charles K. Cook, Sumter, SC
(Vol. 45, No. 4, November 2007)

If n ≥ 3, evaluate
∏Fn−1

j=1 sin(jπ/Fn).
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Solution by the editor

It is well-known (see, for example, formula (24) in [1]), that if m ≥ 2 is an integer then

m−1∏
j=1

sin

(
πj

m

)
=

m

2m−1
.

Taking m = Fn, we get that the desired product evaluates to Fn/2Fn−1.

References

[1] http://mathworld.wolfram.com/TrigonometryAngles.html

Also solved by Paul S. Bruckman, G. C. Greubel, and the proposer.
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