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Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS
to Robert Frontczak, LBBW, Am Hauptbahnhof 2, 70173 Stuttgart, Germany or by email at
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to be new or extending old results. Proposers should submit solutions or other information that
will assist the editor. To facilitate their consideration, all solutions sent by regular mail should
be submitted on separate signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE

H-941 Proposed by Kunle Adegoke, Ile-Ife, Nigeria
Prove that

44

n∑
j=1

FjFj+1Fj+2Fj+3Fj+4

= Fn+2Fn+3Fn+5 (Fn+4 (3Fn + 2Fn+2)− 5FnFn+1)− 30 (Fn+4 − 1)

and

44

n∑
j=1

LjLj+1Lj+2Lj+3Lj+4

= Ln+2Ln+3Ln+5 (Ln+4 (3Ln + 2Ln+2)− 5LnLn+1)− 750Ln+4 − 4518.

H-942 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai Stanciu,
Buzău, Romania

Show that

lim inf
n→∞

(∫ n+1
√

(n+1)!Ln+1

n√n!Ln

3

√
sin6 x+ cos6 x

16
dx

)
≥ α

4e
,

with α = (1 +
√
5)/2 being the golden ratio.

H-943 Proposed by Albert Stadler, Herrliberg, Switzerland
Put

ζL(s) =
∞∑
n=1

1

logs(L2n)
, Re(s) > 1.

Prove the following:

(i) ζL(s) has an analytic continuation to the whole complex plane; the only singularity
being a simple pole at s = 1 with residue 1

2 logα .
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(ii)

ζL(0) = −1
2
,

ζL(−1) = −1
6
logα+

∞∑
k=1

(−1)k−1

k

1

α4k − 1
,

ζL(−2) = 4 logα

∞∑
k=1

(−1)k−1

k

α4k

(α4k − 1)2
+ 2

∞∑
k=2

(−1)k

k
Hk−1

1

α4k − 1
,

where Hk =
∑k

j=1 1/j is the kth harmonic number.

H-944 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Prove that

(i)

∞∑
n=2

(−1)n

Fn+1Fn−1F2n+1F2n−1
=

5
√
5− 11

4
;

(ii)

∞∑
n=1

(−1)n

Ln+1Ln−1F2n+1F2n−1
=

2−
√
5

4
.

H-945 Proposed by the editor
Show that the Diophantine equation

Fn2
n−1 + 1 = m2

has exactly four solutions in nonnegative integers n and m, namely, (n,m) = (0, 1),
(n,m) = (3, 3), (n,m) = (4, 5), and (n,m) = (5, 9).

SOLUTIONS

H-911 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Let r ≥ 2 and s be integers and i =

√
−1. Prove that

(i)
∞∏
n=1

(
1 +

Fr

Frn+s

)
=

1 + βs

1− βr+s
, if s ≥ 0 is even;

(ii)

∞∏
n=1

(
1 +

Fr

Frn+s
i

)
=

αs + i

αs − βri
, if s is odd.

Solution by Brian Bradie, Newport News, VA

(i) Let r ≥ 2 and s ≥ 0 be even integers, and write

1 +
Fr

Frn+s
=

αrn+s − βrn+s + αr − βr

αrn+s − βrn+s
· β

rn+s

βrn+s

=
1− β2(rn+s) + βr(n−1)+s − βr(n+1)+s

1− β2(rn+s)

=
(1 + βr(n−1)+s)(1− βr(n+1)+s)

(1 + βrn+s)(1− βrn+s)
.

Thus, the product telescopes and is equal to

lim
n→∞

1 + βs

1− βr+s
· 1− βr(n+1)+s

1 + βrn+s
=

1 + βs

1− βr+s
,
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because
lim
n→∞

βr(n+1)+s = lim
n→∞

βrn+s = 0.

(ii) Let r ≥ 2 be an even integer and s be an odd integer, and write

1 +
Fr

Frn+s
i =

αrn+s − βrn+s + αri− βri

αrn+s − βrn+s
· β

rn+s

βrn+s

=
−1− β2(rn+s) + βr(n−1)+si− βr(n+1)+si

−1− β2(rn+s)

=
1 + β2(rn+s) − βr(n−1)+si + βr(n+1)+si

1 + β2(rn+s)

=
(1− βr(n−1)+si)(1 + βr(n+1)+si)

(1− βrn+si)(1 + βrn+si)
.

Thus, the product telescopes and is equal to

lim
n→∞

1− βsi

1 + βr+si
· 1 + βr(n+1)+si

1− βrn+si
=

1− βsi

1 + βr+si
,

because
lim
n→∞

βr(n+1)+s = lim
n→∞

βrn+s = 0.

Finally,
∞∏
n=1

(
1 +

Fr

Frn+s
i

)
=

1− βsi

1 + βr+si
· α

s

αs
=

αs + i

αs − βri
.

Also solved by Michel Bataille, Dmitry Fleischman, Ángel Plaza, Albert Stadler,
Yunyong Zhang, and the proposer.

H-912 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Prove that

(i)
∞∑
n=1

1

FnFn+4

(
1

Fn+1
+

1

Fn+2
− 1

Fn+3

)
=

1

3
;

(ii)

∞∑
n=1

(−1)n

FnFn+4

(
1

Fn+1
+

1

Fn+2
− 1

Fn+3

)
= −1

6
;

(iii)
∞∑
n=1

1

FnFn+1Fn+2Fn+3Fn+4

(
1

Fn+1
+

1

Fn+2
− 1

Fn+3

)
=

1

24
.

Solution by Michel Bataille, Rouen, France
Let Kn = 1

Fn+1
+ 1

Fn+2
− 1

Fn+3
. Using

F 2
n+3 + FnFn+3 = Fn+3 · 2Fn+2 = Fn+2(Fn+1 + Fn+4),

we obtain

Kn =
F 2
n+3 − Fn+1Fn+2

Fn+1Fn+2Fn+3
=

Fn+2Fn+4 − FnFn+3

Fn+1Fn+2Fn+3
=

Fn+4

Fn+1Fn+3
− Fn

Fn+1Fn+2
. (1)

(i) From (1), we deduce
∞∑
n=1

Kn

FnFn+4
=

∞∑
n=1

(
1

FnFn+1Fn+3
− 1

Fn+1Fn+2Fn+4

)
= lim

N→∞

(
1

F1F2F4
− 1

FN+1FN+2FN+4

)
,
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and therefore,
∞∑
n=1

Kn

FnFn+4
=

1

F1F2F4
=

1

3
.

(ii) The required sum is
∞∑
n=1

Un, where

Un =
(−1)nKn

FnFn+4
=

(−1)n

FnFn+1Fn+3
+

(−1)n+1

Fn+1Fn+2Fn+4
.

Using Cassini’s identity, we calculate

Un =
Fn+1Fn+3 − F 2

n+2

FnFn+1Fn+3
+

Fn+2Fn+4 − F 2
n+3

Fn+1Fn+2Fn+4

=
1

Fn
−

F 2
n+2

FnFn+1Fn+3
+

1

Fn+1
−

F 2
n+3

Fn+1Fn+2Fn+4

=
Fn+2

FnFn+1
−

F 2
n+2

FnFn+1Fn+3
−

F 2
n+3

Fn+1Fn+2Fn+4

=
Fn+2

FnFn+3
−

F 2
n+3

Fn+1Fn+2Fn+4

=
Fn+2

FnFn+3
− Fn+3

Fn+1Fn+4
− Fn+3

Fn+1Fn+4

(
Fn+3

Fn+2
− 1

)
=

Fn+2

FnFn+3
− Fn+3

Fn+1Fn+4
−
(

1

Fn+2
− 1

Fn+4

)
,

so that
∞∑
n=1

Un =

∞∑
n=1

[(
Fn+2

FnFn+3
− Fn+3

Fn+1Fn+4

)
−
(

1

Fn+2
− 1

Fn+4

)]
=

F3

F1F4
− 1

F3
− 1

F4
= −1

6
.

(iii) Again with (1), we obtain

Kn

FnFn+1Fn+2Fn+3Fn+4
=

1

FnF 2
n+1Fn+2F 2

n+3

− 1

F 2
n+1F

2
n+2Fn+3Fn+4

= Vn +Wn −Wn+1,

where

Vn =
1

FnF 2
n+1Fn+2F 2

n+3

− 1

F 2
nF

2
n+1Fn+2Fn+3

and Wn =
1

F 2
nF

2
n+1Fn+2Fn+3

.

Using Fn+3 − Fn = 2Fn+1 and Fn+3 + Fn = 2Fn+2, we can transform the expression of Vn as
follows:

Vn =
Fn − Fn+3

F 2
nF

2
n+1Fn+2F 2

n+3

=
−2

F 2
nFn+1Fn+2F 2

n+3

=
−1

2
· 4Fn+1Fn+2

F 2
nF

2
n+1F

2
n+2F

2
n+3

=
−1

2
·

F 2
n+3 − F 2

n

F 2
nF

2
n+1F

2
n+2F

2
n+3

,
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and hence, Vn = −1
2 (Zn − Zn+1), where Zn = 1

F 2
nF

2
n+1F

2
n+2

. Thus,

∞∑
n=1

Kn

FnFn+1Fn+2Fn+3Fn+4
=

−1

2

∞∑
n=1

(Zn − Zn+1) +
∞∑
n=1

(Wn −Wn+1)

=
−1

2
· 1

F 2
1F

2
2F

2
3

+
1

F 2
1F

2
2F3F4

= −1
8
+

1

6
=

1

24
.

Also solved by Brian Bradie, Dmitry Fleischman, Ángel Plaza, Albert Stadler,
Yunyong Zhang, and the proposer.

Editor’s remark: Albert Stadler showed by induction the identities

(i)

k∑
n=1

1

FnFn+4

(
1

Fn+1
+

1

Fn+2
− 1

Fn+3

)
=

1

3
− 1

Fk+1Fk+2Fk+4
,

(ii)

k∑
n=1

(−1)n

FnFn+4

(
1

Fn+1
+

1

Fn+2
− 1

Fn+3

)
= −1

6
+

(−1)k

Fk+1Fk+3Fk+4
,

(iii)
k∑

n=1

1

FnFn+1Fn+2Fn+3Fn+4

(
1

Fn+1
+

1

Fn+2
− 1

Fn+3

)
=

1

24
− 1

2Fk+1(Fk+2Fk+3)
2Fk+4

.

H-913 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Let r ≥ 1 be an odd integer. Prove that there exist rational numbers P1, Q1, P2, and Q2

such that
∞∑
n=1

(−1)
n(r−1)

2

FnFn+1Fn+2 · · ·Fn+r
= P1

∞∑
n=1

1

FnFn+1
+Q1

and
∞∑
n=1

(−1)n

(FnFn+1Fn+2 · · ·Fn+r)2
= P2

∞∑
n=1

1

FnFn+1
+Q2.

Solution by the proposer

Let r ≥ s ≥ 1 and let

Tr(s) =

∞∑
n=1

(−1)sn∏n+s
j=n Fj

∏n+r
j=n+r−s Fj

and Cr(s) =
1

FsFr−2s
∏s

j=1 Fj
∏r

j=r−s+1 Fj
.

We use the identities

(i) Fa+b + (−1)bFa−b = FaLb (see [1](15a));
(ii) Fn+aFn+b = FnFn+a+b + (−1)nFaFb (see [2](20a)).

Since

LsFn+sFn+r−s − Fn+sFn+r = Fn+s(Fn+r−sLs − Fn+r)

= Fn+s(Fn+r + (−1)sFn+r−2s − Fn+r) (by (i))

= (−1)sFn+sFn+r−2s

= (−1)sFnFn+r−s + (−1)n+sFsFr−2s (by (ii)),

we have

(−1)n+sFsFr−2s − LsFn+sFn+r−s = −Fn+sFn+r − (−1)sFnFn+r−s. (1)
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We have
∞∑
n=1

(
(−1)snFsFr−2s∏n+s

j=n Fj
∏n+r

j=n+r−s Fj

− (−1)(s−1)n−sLs∏n+s−1
j=n Fj

∏n+r
j=n+r−s+1 Fj

)

=
∞∑
n=1

(−1)(s−1)n−s ((−1)n+sFsFr−2s − LsFn+sFn+r−s)∏n+s
j=n Fj

∏n+r
j=n+r−s Fj

=

∞∑
n=1

(−1)(s−1)n−s+1 (Fn+sFn+r + (−1)sFnFn+r−s)∏n+s
j=n Fj

∏n+r
j=n+r−s Fj

(by (1))

=
∞∑
n=1

(
(−1)(s−1)(n−1)∏n+s−1

j=n Fj
∏n+r−1

j=n+r−s Fj

− (−1)(s−1)n∏n+s
j=n+1 Fj

∏n+r
j=n+r−s+1 Fj

)

=
1∏s

j=1 Fj
∏r

j=r−s+1 Fj
.

Therefore, we obtain

Tr(s) =
(−1)sLs

FsFr−2s
Tr(s− 1) + Cr(s).

Using the above identity repeatedly, it turns out that there are rational numbers p and q such
that

Tr(s) = pTr(0) + q. (2)

Setting s = r−1
2 in (2), there are rational numbers p1 and q1 such that

∞∑
n=1

(−1)
n(r−1)

2

FnFn+1Fn+2 · · ·Fn+r
= p1

∞∑
n=1

1

FnFn+r
+ q1.

Setting s = r in (2), there are rational numbers p2 and q2 such that

∞∑
n=1

(−1)n

(FnFn+1Fn+2 · · ·Fn+r)
2 = p2

∞∑
n=1

1

FnFn+r
+ q2.

In [2], Brousseau showed that there are rational number a and b such that

∞∑
n=1

1

FnFn+r
= a

∞∑
n=1

1

FnFn+1
+ b.

Therefore, there are rational numbers P1, Q1, P2, and Q2 such that

∞∑
n=1

(−1)
n(r−1)

2

FnFn+1Fn+2 · · ·Fn+r
= P1

∞∑
n=1

1

FnFn+1
+Q1

and
∞∑
n=1

(−1)n

(FnFn+1Fn+2 · · ·Fn+r)
2 = P2

∞∑
n=1

1

FnFn+1
+Q2.

Example: For r = 3, we have

(i)

∞∑
n=1

(−1)n

FnFn+1Fn+2Fn+3
= −1

2

∞∑
n=1

1

FnFn+1
+

3

4
;
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(ii)
∞∑
n=1

(−1)n

(FnFn+1Fn+2Fn+3)2
=

3

2

∞∑
n=1

1

FnFn+1
− 43

16
.

References

[1] B. A. Brousseau, Summation of infinite Fibonacci series, The Fibonacci Quarterly, 7.2 (1969), 143–168.
[2] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Dover, 2008.

No other solution for this problem was submitted.

H-914 Proposed by Benjamin Lee Warren, New York
Let On = 1

3n(2n
2 + 1) denote the nth Octahedral number and Cn = 1

6(n
3 + 5n+ 6) denote

the nth Cake number. Prove the identity

CF2n +OF2n+1 = CF2n+2 .

Solution by Steve Edwards, Roswell, GA

We start with F 2
2n+1−1 = F2nF2n+2, which comes from Cassini’s formula and can be found

in [1]. Multiply both sides by 3F2n+1 to get

3F2n+1(F
2
2n+1 − 1) = 3F2nF2n+1F2n+2.

Next, use the identity 3FkFk+1Fk+2 = F 3
k+2 − F 3

k+1 − F 3
k (also in [1]) to get

3F 3
2n+1 − 3F2n+1 = F 3

2n+2 − F 3
2n+1 − F 3

2n.

Equivalently,

4F 3
2n+1 − 3F2n+1 + F 3

2n = F 3
2n+2,

or

4F 3
2n+1 + 2F2n+1 + F 3

2n = F 3
2n+2 + 5F2n+1.

Using the defining recurrence, we have 5F2n+1 = 5F2n+2 − 5F2n, which gives

F 3
2n + 5F2n + 6 + 2F2n+1(2F

2
2n+1 + 1) = F 3

2n+2 + 5F2n+2 + 6,

or
1

6
(F 3

2n + 5F2n + 6) +
1

3
F2n+1(2F

2
2n+1 + 1) =

1

6
(F 3

2n+2 + 5F2n+2 + 6).

The result follows.

Reference

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications, 2nd ed., John Wiley and Sons, 2018.

Also solved by Michel Bataille, Brian Bradie, Charles K. Cook, Dmitry Fleischman,
Ralph P. Grimaldi, Won Kyun Jeong, Wei-Kai Lai, Woojun Lee, Hideyuki Ohtsuka,
Ángel Plaza, Raphael Schumacher, Jason L. Smith, Albert Stadler, David Terr,
Ell Torek, Ándres Ventas, Yunyong Zhang, and the proposer.

H-915 Proposed by the editor
Prove that for all k,m, n ≥ 0,

n+2∑
j=0

(
n+ 2

j

)
F2kj+m = (L2k + 2)

n∑
j=0

(
n

j

)
F2k(j+1)+m
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and
n+2∑
j=0

(
n+ 2

j

)
L2kj+m = (L2k + 2)

n∑
j=0

(
n

j

)
L2k(j+1)+m.

Solution by Jason L. Smith, Decatur, IL

Consider the following application of the binomial theorem:

n+2∑
j=0

(
n+ 2

j

)
x2kj+m = xm

(
1 + x2k

)n+2

= xm
(
1 + 2x2k + x4k

) n∑
j=0

(
n

j

)
x2kj

=
(
x−2k + 2 + x2k

) n∑
j=0

(
n

j

)
x2k(j+1)+m.

Now, let x = α. Noting that α−2k = β2k, we obtain

A =

n+2∑
j=0

(
n+ 2

j

)
α2kj+m =

(
α2k + α−2k + 2

) n∑
j=0

(
n

j

)
α2k(j+1)+m

= (L2k + 2)

n∑
j=0

(
n

j

)
α2k(j+1)+m.

If we let x = β, we similarly obtain

B =
n+2∑
j=0

(
n+ 2

j

)
β2kj+m = (L2k + 2)

n∑
j=0

(
n

j

)
β2k(j+1)+m.

The desired identities can be obtained by taking 1√
5
(A−B) and A+B.

Also solved by Michel Bataille, Dmitry Fleischman, Ralph P. Grimaldi, Hideyuki
Ohtsuka, Ángel Plaza, Albert Stadler, and the proposer.
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