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Each problem and solution should be typed on separate sheets. Solutions to problems in this
issue must be received by August 15, 2014. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results”.

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1141 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Determine
∞
∑

k=1

2k sin(2kθ)

L2k + 2cos(2kθ)
.
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B-1142 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.

Prove that
n
∑

k=1

F4k−1 = F2n · F2n+1 for any positive integer n.

B-1143 Proposed by José Luis D́ıaz-Barrero, BARCELONA TECH, Barcelona,
Spain and Francesc Gispert Sánchez, CFIS, BARCELONA TECH, Bar-
celona, Spain.

Let n be a positive integer. Prove that

1

FnFn+1

[

(

1−
1

n

) n
∑

k=1

F 2n
k +

n
∏

k=1

F 2
k

]

≥

(

n
∏

k=1

F
(1−1/n)
k

)2

.

B-1144 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.

Prove that
n
∏

k=1

(F 2
k + 1) > Fn · Fn+1 + 1 (1)

n
∏

k=1

(L2
k + 1) > Ln · Ln+1 − 1 (2)

for any positive integer n.

B-1145 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.

Prove that

(

F1 −
√

F1F2 + F2

)2
+
(

F2 −
√

F2F3 + F3

)2
+ · · · +

(

Fn −
√

FnF1 + F1

)2
≥ FnFn+1 (1)

(

L1 −
√

L1L2 + L2

)2
+
(

L2 −
√

L2L3 + L3

)2
+· · ·+

(

Ln −
√

LnL1 + L1

)2
≥ LnLn+1−2 (2)

for any positive integer n.
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SOLUTIONS

Inequalities With 4’s

B-1121 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade General
School, Buzău, Romania
(Vol. 51.1, February 2013)

Prove that
n+ 4 + 4FnFn+1 > 4Fn+2 (1)

and
n+ 4 + 4LnLn+1 > 4Ln+2 (2)

for any positive integer n.

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Note that inequality (1) may be written as
n

4
> Fn+2 − 1− FnFn+1.

Now, since Fn+2 − 1 =
∑n

k=1 Fk and FnFn+1 =
∑n

k=1 F
2
k , the conclusion follows trivially.

A similar argument may be applied to inequality (2), since Ln+2 − 3 =
∑n

k=1 Lk, and
LnLn+1 − 2 =

∑n
k=1 L

2
k.

Also solved by Gurdial Arora and Sindhu Unnithan (jointly), Brian D. Beasly,
Paul S. Bruckman, Charles K. Cook, Dmitry Fleishman, Amos E. Gera, Russell
J. Hendel, Charles McCraken, Jaroslav Seibert, David Stone and John Hawkins
(jointly), and the proposer.

An Odd Mod

B-1122 Proposed by Harris Kwong, SUNY Fredonia, Fredonia, NY
(Vol. 51.1, February 2013)

Prove that, given any integer r ≥ 4 if gcd(2r − 1, r2 − r − 1) = 1, then

Fn+φ(r2−r−1) ≡ Fn, (mod r2 − r − 1)

for all nonnegative integers n. Here, φ denotes Euler’s phi-function.

Solution by the proposer.

From
∑

n≥0

Fnx
n =

x

1− x− x2

≡
x

(1− rx)[1− (1− r)x]

≡ (2r − 1)−1

(

1

1− rx
−

1

1− (1− r)x

)

(mod r2 − r − 1).
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Therefore,

Fn ≡ (2r − 1)−1[rn + (1− r)n] (mod r2 − r − 1).

Since r(1− r) ≡ −1 (mod r2 − r− 1), it is clear that the inverses of r and 1− r exist. Hence,
their orders divide φ(rr − r − 1). Consequently,

rn ≡ rn+φ(r2−r−1) (mod r2 − r − 1)

and

(1− r)n ≡ (1− r)n+φ(r2−r−1) (mod r2 − r − 1).

This result follows immediately.

Also solved by Paul S. Bruckman.

Square Roots and Cubes of Fibonacci Numbers

B-1123 Proposed by José Luis D́ıaz-Barrero, BARCELONA TECH, Barcelona,
Spain and Mihály Bencze, Braşov, Romania.
(Vol. 50.1, February 2012)

Let n ≥ 2 be a positive integer. Prove that

1

n

n
∑

k=1

F 3
k

FnFn+1 − F 2
k

≥
1

n− 1

√

√

√

√

1

Fn+2 − 1

n
∑

k=1

F 3
k .

Solution by Paul S. Bruckman.

We may express the given inequality as follows:

1

n

n
∑

k=1

F 3
k

∑n
k=1 F

2
k − F 2

k

≥
1

n− 1

√

∑n
k=1 F

3
k

∑n
k=1 Fk

, n = 2, 3, . . . . (1)

We use the following inequality:
(

1
n

∑n
k=1 x

3
k

)1/3 ≥ 1
n

∑n
k=1 xk, valid for positive xk’s, which

reduces to
√

∑n
k=1 x

3
k

∑n
k=1 xk

≥
1

n

n
∑

k=1

xk.

In particular, it suffices to show that

1

n

n
∑

k=1

F 3
k

∑n
k=1 F

2
k − F 2

k

≥
1

(n− 1)n

n
∑

k=1

Fk, n = 2, 3, . . . . (2)

The denominator of the expression on the left side of (2) satisfies

n
∑

k=1

F 2
k − F 2

k ≥
n−1
∑

k=1

F 2
k .

It therefore suffices to prove that

1

(n− 1)

n
∑

k=1

Fk ≤
n
∑

k=1

F 3
k

∑n−1
k=1 F

2
k

=

∑n
k=1 F

3
k

∑n−1
k=1 F

2
k

.
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Equivalently, it suffices to prove the following:

1

(n− 1)

n−1
∑

k=1

F 2
k ≤

∑n
k=1 F

3
k

∑n
k=1 Fk

. (3)

A stronger inequality actually holds, namely

1

n

n
∑

k=1

F 2
k ≤

∑n
k=1 F

3
k

∑n
k=1 Fk

. (4)

Equation (4) is stronger than equation (3) because its left member represents an average value
of F 2

k including the final term in the sum, which does not appear in (3); therefore,

1

(n− 1)

n−1
∑

k=1

F 2
k ≤

1

n

n
∑

k=1

F 2
k .

The right member of (4) also represents a weighted average value of F 2
k . However, the “weights”

in the right member of (4) are the Fk’s (an increasing sequence, from some point on); the
weights in the left member are all equal to 1. This tends to shift the average to a higher value
in the right member of (4), as opposed to its left member. This proves (4) and the original
inequality.

Also solved by Dmitry Fleishman, Ángel Plaza, and the proposer.

Greater Than Half the Number of Terms

B-1124 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade General
School, Buzău, Romania.
(Vol. 51.1, February 2013)

Prove that
n
∑

k=1

(

Fk

Fk+3
+

Fk+1

2Fk + Fk+1

)

>
n

2
(1)

n
∑

k=1

(

Lk

Lk+3
+

Lk+1

2Lk + Lk+1

)

>
n

2
(2)

for any positive integer n.

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

We know that Fk+3 = Fk+2 + Fk+1 = 2Fk+1 + Fk, and Lk+3 = 2Lk+1 + Lk. Hence, both
inequalities may be proved similarly. We’ll show (1) only.
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n
∑

k=1

(

Fk

Fk+3
+

Fk+1

2Fk + Fk+1

)

=

n
∑

k=1

(

Fk

Fk + 2Fk+1
+

Fk+1

2Fk + Fk+1

)

>

n
∑

k=1

(

Fk

2Fk + 2Fk+1
+

Fk+1

2Fk + 2Fk+1

)

=
n

2
.

�

Also solved by Gurdial Arora and Sindhu Unnithan (jointly), Paul S. Bruckman,
Charles K. Cook, Kenneth B. Davenport, Dmitry Fleishman, Amos E. Gera,
Russell J. Hendel, Jaraslav Seibert, and the proposer.

A Lucas Sum

B-1125 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade General
School, Buzău, Romania.
(Vol. 51.1, February 2013)

Prove that

(L2
1 + 1)(L2

2 + 1)

L1L2 + 1
+
(L2

2 + 1)(L2
3 + 1)

L2L3 + 1
+· · ·+

(L2
n−1 + 1)(L2

n + 1)

Ln−1Ln + 1
+
(L2

n + 1)(L2
1 + 1)

LnL1 + 1
≥ 2Ln+2−6,

for any positive integer n.

Solution by Kenneth B. Davenport, Dallas, PA.

Omitting the last term of the left-hand side, the inequality remains valid for all integers
n ≥ 2. The left-hand side then becomes

n
∑

k=1

(L2
k−1 + 1)(L2

k + 1)

(Lk−1Lk + 1)
. (1)

The right-hand side

2(Ln+2 − 3) = 2

n
∑

k=1

Lk (2)

as shown in [1, p. 54].
Hence, we only need to show that

(L2
k−1 + 1)(L2

k + 1)

(Lk−1Lk + 1)
≥ 2Lk. (3)

Note that the result is true for k = 1; not true for k = 2, but for all k ≥ 3 the above relation
is true. This would mean the problem, as originally stated,

(L2
1 + 1)(L2

2 + 1)

L1L2 + 1
+
(L2

2 + 1)(L2
3 + 1)

L2L3 + 1
+· · ·+

(L2
n−1 + 1)(L2

n + 1)

Ln−1Ln + 1
+
(L2

n + 1)(L2
1 + 1)

LnL1 + 1
≥ 2Ln+2−6,
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is certainly true, where n is a positive integer ≥ 2.
Next, we will note that the LHS of (3) may be written as

(Lk−1Lk + 1) +
L2
k−2

Lk−1Lk + 1
. (4)

This follows from dividing the bottom into the top and then we prove

L2
k−1 + L2

k − 2Lk−1Lk = L2
k−2. (5)

This easily follows by writing Lk−2 as Lk − Lk−1; then squaring and comparing terms.
Since Lk−1 exceeds 2 for all k ≥ 3, this clearly establishes (3) and we are done.
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Also solved by Paul S. Bruckman, Charles K. Cook, Dmitry Freishman, Ángel
Plaza, and the proposer.
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