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Each problem or solution should be typed on separate sheets. Solutions to problems in this
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elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results.”

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√

5)/2, β = (1−
√

5)/2, Fn = (αn − βn)/
√

5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1236 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.

Prove that, for any integers m ≥ 0 and n > 1,

n+1∑
k=1

(
n
k−1
)m+1

F 2m
k

>
2n(m+1)

Fmn+1F
m
n+2

, and

n+1∑
k=1

Fm+1
k(
n
k−1
)m >

(Fn+3 − 1)m+1

2mn
.

B-1237 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Evaluate
∞∏
k=1

(
1 +

1

αk + α

)
, and

∞∏
k=1

(
1− 1

αk + α

)
.
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B-1238 Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain.

Let a > 1 and consider the sequence of real numbers defined recursively by x0 = 0, x1 = 1,
and

xn+1 =

(
a+

1

a

)
xn − xn−1, n ≥ 1.

Prove that
∞∑
n=0

1

x2n
is a rational number if and only if a is a rational number.

B-1239 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National Uni-
versity, Ivano-Frankivsk, Ukraine.

For all integers n, prove that(
1

Ln
− 1

Ln+1

)4

+

(
1

Ln+1
+

1

Ln+2

)4

+

(
1

Ln+2
+

1

Ln

)4

= 2

(
1

Ln
+

1

Ln+1
− 1

Ln+2

)4

.

B-1240 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.

Assume xk > 0 for k = 1, 2, . . . , n. Prove that, for any positive integers m ≥ 1 and n > 1,(
n∑
k=1

1

xk

) n∑
i=1

cyclic

xixi+1

Fmxi + Fm+1xi+1

 ≥ n2

Fm+2
,

(
n∑
k=1

1

xk

) n∑
i=1

cyclic

xixi+1

Lmxi + Lm+1xi+1

 ≥ n2

Lm+2
.

SOLUTIONS

Editor’s Notes. In the solution to Elementary Problem B-1208 that appeared in the May
issue, the first round of row reductions should be carried out according to k = n+ 1, n, . . . , 3.
The two rounds of row reductions can be combined into one. For k = n+ 1, n, . . . , 3, subtract
the sum of row k − 1 and row k − 2 from row k. Next, subtracting the first row from the
second yields the last augmented matrix shown in the solution.

Another Application of the AM-GM Inequality

B-1216 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.
(Vol. 55.4, November 2017)
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Prove that, for any positive real number m, and any positive integer n,

Fmn F
m
n+1

n∑
k=1

Lm+1
k

F 2m
k

≥ nm+1

(
n∏
k=1

Lk

)m+1
n

.

Solution 1 by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

The proposed inequality follows from the AM-GM inequality and the identity FnFn+1 =∑n
k=1 F

2
k :

Fmn F
m
n+1

m∑
k=1

Lm+1
k

F 2m
k

≥ Fmn F
n
n+1 · n n

√√√√ n∏
k=1

Lm+1
k

F 2m
k

=

 FnFn+1

n

√∏n
k=1 F

2
k

m

· n

(
n∏
k=1

Lk

)m+1
n

=

 ∑n
k=1 F

2
k

n

√∏n
k=1 F

2
k

m

· n

(
n∏
k=1

Lk

)m+1
n

≥

n n

√∏n
k=1 F

2
k

n

√∏n
k=1 F

2
k

m

· n

(
n∏
k=1

Lk

)m+1
n

= nm+1

(
n∏
k=1

Lk

)m+1
n

.

Solution 2 by Wei-Kai Lai and John Risher (student) (jointly), University of South
Carolina Salkehatchie, Walterboro, SC.

According to Radon’s Inequality, we know that
n∑
k=1

Lm+1
k

F 2m
k

≥
(
∑n

k=1 Lk)
m+1(∑n

k=1 F
2
k

)m .

To prove the claimed inequality, we therefore only need to prove that

Fmn F
m
n+1

(
∑n

k=1 Lk)
m+1(∑n

k=1 F
2
k

)m ≥ nm+1

(
n∏
k=1

Lk

)m+1
n

.

Since
∑n

k=1 F
2
k = FnFn+1, the above inequality is equivalent to(

n∑
k=1

Lk

)m+1

≥ nm+1

(
n∏
k=1

Lk

)m+1
n

,

which is apparently true due to the AM-GM inequality.

Also solved by Brian Bradie, Kenny B. Davenport, I. V. Fedak, Dmitry Fleis-
chman, Hideyuki Ohtsuka, and the proposers.
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Help From Exponential Generating Function

B-1217 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 55.4, November 2017)

Let Mki = 2(i−1)kiLki . For integers r ≥ 1 and n ≥ 0, find a closed form expression for the
sum

Sn =
∑

0≤k,k1,...,kr≤n
k+k1+···+kr=n

FkMk1Mk2 · · ·Mkr

k! k1! k2! · · · kr!
.

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.

The exponential generating function for the Fibonacci numbers is

GF (x) =
∞∑
k=0

Fk
k!
xk =

1√
5

(
eαx − eβx

)
,

whereas the exponential generating function for the Lucas numbers is

GL(x) =
∞∑
k=0

Lk
k!
xk = eαx + eβx.

It follows that the exponential generating function for Mki is

Gi(x) =
∞∑
ki=0

Mki

ki!
xki =

∞∑
ki=0

Lki
ki!

(
2i−1x

)ki = GL(2i−1x) = e2
i−1αx + e2

i−1βx.

Due to convolution, we can now recognize Sn as the coefficient of xn in the product

GF (x)G1(x)G2(x) · · ·Gr(x)

= 1√
5

(
eαx − eβx

)(
eαx + eβx

)(
e2αx + e2βx

)
· · ·
(
e2

r−1αx + e2
r−1βx

)
= 1√

5

(
e2αx − e2βx

)(
e2αx + e2βx

)
· · ·
(
e2

r−1αx + e2
r−1βx

)
= 1√

5

(
e4αx − e4βx

)
· · ·
(
e2

r−1αx + e2
r−1βx

)
...

...

= 1√
5

(
e2

rαx − e2rβx
)
.

Therefore,

Sn =
1√
5

[
(2rα)n

n!
− (2rβ)n

n!

]
=

2rnFn
n!

.

Also solved by Raphael Schumacher (student), and the proposer.

Simplifying a Complicated Expression

B-1218 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National Uni-
versity, Ivano-Frankivsk, Ukraine.
(Vol. 55.4, November 2017)

Find a closed form expression for

(Ln+1−1)Fn(F2n+2−Fn+2)+(1−Fn−Fn+2)Fn+2(F2n+2−Fn+3)+(F2n+2−Fn+2)(F2n+2−Fn+3).
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Solution 1 by Charles K. Cook, Sumter, SC.

The well-known identities F2n = FnLn and Ln = Fn−1 + Fn+1 will be used as needed. Let
A represent the first term, B, the second, and C, the third, of the given sum. Expanding and
using the above identities yields

A = FnFn+1L
2
n+1 − Fn(Fn+1 + Fn+2)Ln+1 + FnFn+2,

B = −Fn+1Fn+2L
2
n+1 + Fn+2(Fn+1 + Fn+3)Ln+1 − Fn+2Fn+3,

C = F 2
n+1L

2
n+1 − Fn+1(Fn+2 + Fn+3)Ln+1 + Fn+2Fn+3.

The coefficient for L2
n+1 in the sum is

FnFn+1 − Fn+1Fn+2 + F 2
n+1 = Fn+1(Fn − Fn+2 + Fn+1) = 0,

whereas the coefficient for Ln+1 is

−Fn(Fn+1 + Fn+2) + Fn+2(Fn+1 + Fn+3)− Fn+1(Fn+2 + Fn+3)

= −Fn(Fn+1 + Fn+2) + (Fn+2 − Fn+1)Fn+3

= 0,

and the remaining terms are

FnFn+2 − Fn+2Fn+3 + Fn+2Fn+3 = FnFn+2.

Thus, adding A, B, and C, the required closed form for the given sum is FnFn+2.

Solution 2 by Hideyuki Ohtsuka, Saitama, Japan.

We use the well-known identities F2m = FmLm, and Fm−1 +Fm+1 = Lm. Let t = Ln+1− 1.
Then, we have

F2n+2 − Fn+2 = Fn+1Ln+1 − Fn+1 − Fn = tFn+1 − Fn;

F2n+2 − Fn+3 = Fn+1Ln+1 − Fn+1 − Fn+2 = tFn+1 − Fn+2;

1− Fn − Fn+2 = 1− Ln+1 = −t.
By the above identities, the expression of the problem is

tFn(tFn+1 − Fn)− tFn+2(tFn+1 − Fn+2) + (tFn+1 − Fn)(tFn+1 − Fn+2)

= t2Fn+1(Fn − Fn+2 + Fn+1) + t [Fn+2(Fn+2 − Fn+1)− Fn(Fn + Fn+1)] + FnFn+2

= t(Fn+2Fn − FnFn+2) + FnFn+2

= FnFn+2.

Solution 3 by the proposer.

We use the identity F2n+2 = Fn+1Ln+1 = Fn+1(Fn +Fn+2) to write the given expression as

FnFn+2

[
(F2n+2 − Fn+1)(F2n+2 − Fn+2)

Fn+1Fn+2

−(F2n+2 − Fn+1)(F2n+2 − Fn+3)

FnFn+1
+

(F2n+2 − Fn+2)(F2n+2 − Fn+3)

FnFn+2

]
.

Let

P (x) =
(x− Fn+1)(x− Fn+2)

Fn+1Fn+2
− (x− Fn+1)(x− Fn+3)

FnFn+1
+

(x− Fn+2)(x− Fn+3)

FnFn+2
.
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We have

P (Fn+1) = P (Fn+2) = P (Fn+3) = 1.

Therefore, P (x) ≡ 1. Thus, a closed form for the expression is

FnFn+2 · P (F2n+2) = FnFn+2.

Also solved by Brian D. Beasley, Kenny B. Davenport, Steve Edwards, Dmitry
Fleischman, G. C. Greubel, Kantaphon Kuhapatanakul, Wei-Kai Lai, Ehren Met-
calfe, Verónica Molina Reales (student), Ángel Plaza, Raphael Schumacher (stu-
dent), Jason L. Smith, Elizabeth S. Spoehel (student), and the proposers.

An Inequality with a Cyclic Sum

B-1219 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.
(Vol. 55.4, November 2017)

Prove that, for any integer n ≥ 2,

F 4
n + F 2

n + 1

Fn
+
n−1∑
k=1

F 4
k + F 2

kF
2
k+1 + F 4

k+1

FkFk+1
> 3FnFn+1.

Editor’s Note: The condition on n should be n ≥ 3.

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Since F1 = 1, and

FnFn+1 =
n∑
k=1

F 2
k ,

the proposed inequality may be written as

n∑
k=1
cyclic

F 4
k + F 2

kF
2
k+1 + F 4

k+1

FkFk+1
> 3

n∑
k=1

F 2
k ,

which is a special case of the following more general inequality.

Lemma. Let a1, . . . , am be a sequence of positive real numbers. Then,

m∑
k=1
cyclic

a4k + a2ka
2
k+1 + a4k+1

akak+1
≥ 3

m∑
k=1

a2k.

Proof. It is enough to prove that, if a, b > 0, then

a4 + a2b2 + b4

ab
≥ 3

2
(a2 + b2),

which is equialent to

2(a4 + a2b2 + b4) ≥ 3ab(a2 + b2).
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To complete the proof, observe that

a4 + b4 ≥ a3b+ ab3 = ab(a2 + b2),

a4 + 2a2b2 + b4 = (a2 + b2)(a2 + b2) ≥ 2ab(a2 + b2).

To obtain a strict inequality, we need m ≥ 2, and some of the terms in the sequence a1, . . . , am
have to be different. 2

Notice that the inequality in the problem becomes an identity when n = 2.

Also solved by Brian D. Beasley, Brian Bradie, Kenny B. Davenport, I. V. Fedak,
Dmitry Fleischman, Wei-Kai Lai and John Risher (student) (jointly), Hideyuki
Ohtsuka, and the proposers.

Gelin-Cesàro Identity Yields a Telescoping Product

B-1220 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 55.4, November 2017)

Prove that
∞∏
n=3

(
1− 1

F 4
n

)
=
α5

12
.

Solution by Steve Edwards, Kennesaw State University, Marietta, GA.

Using the Gelin-Cesàro Identity F 4
n − 1 = Fn−2Fn−1Fn+1Fn+2, we have

1− 1

F 4
n

=
F 4
n − 1

F 4
n

=
Fn−2Fn−1Fn+1Fn+2

F 4
n

.

It follows from the telescoping property that, for m ≥ 4,
m∏
n=3

(
1− 1

F 4
n

)
=

m∏
n=3

Fn−2Fn−1Fn+1Fn+2

F 4
n

=
F1F

2
2

F 2
3F4
·
F 2
m+1Fm+2

Fm−1F 2
m

=
F 2
m+1Fm+2

12Fm−1F 2
m

.

Since limm→∞ Fm+j/Fm = αj , we find
∞∏
n=3

(
1− 1

F 4
n

)
= lim

m→∞

F 2
m+1Fm+2

12Fm−1F 2
m

= lim
m→∞

1

12

(
Fm+1

Fm

)2 Fm+2

Fm−1
=
α2 · α3

12
=
α5

12
.

Also solved by Brian Bradie, Kenny B. Davenport, I. V. Fedak, Dmitry Fleis-
chman, Kantaphon Kuhapatanakul, Ángel Plaza, Raphael Schumacher (student),
and the proposer.
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