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Each problem and solution should be typed on separate sheets. Solutions to problems in
this issue must be received by November 15, 2009. If a problem is not original, the proposer
should inform the Problem Editor of the history of the problem. A problem should not be
submitted elsewhere while it is under consideration for publication in this Journal. Solvers
are asked to include references rather than quoting “well-known results”.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√

5)/2, β = (1−√5)/2, Fn = (αn − βn)/
√

5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1047 Proposed by Charles K. Cook, Sumter, SC

Given positive integers n, p, and q greater than 1, show that
pq
√

F p+q
n +

pq
√

F p+q
n > p

√
Fn

q
√

Ln + p
√

Ln
q
√

Fn.

B-1048 Proposed by José Luis Dı́az-Barrero, Universidad de Cataluña, Barcelona,
Spain

Let n be a positive integer. Prove that

tan

(
2Fn−1

1 + L2
n

)
≤ 2Fn−1

1 + F2n

≤ tan

(
2Fn−1

1 + F 2
n

)
.
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B-1049 Proposed by Paul S. Bruckman, Sointula, Canada

Prove the following identities:

(1) 2(Ln)3 = −(Fn+2)
3 + 9(Fn+1)

3 + 9(Fn−1)
3 + (Fn−2)

3;

(2) 250(Fn)3 = −(Ln+2)
3 + 9(Ln+1)

3 + 9(Ln−1)
3 + (Ln−2)

3.

B-1050 Proposed by R. David Mitchell, University of South Carolina Sumter,
Sumter, SC

For the generalized Fibonacci sequence jan−1 + kan = an+1, n ≥ 2, where j, k, a1, and
a2 are non-zero integers, find functions f(j, k, a1, a2) and g(j, n) such that a2

n − an−1an+1 =
f(j, k, a1, a2)g(j, n).

SOLUTIONS

Three Vanishing Sums

B-1040 Proposed by Paul S. Bruckman, Sointula, Canada
(Vol. 45.4, November 2007)

If
[
n
k

]
denotes the standard Fibonomial coefficient, prove the following identities, valid for

m = 0, 1, 2, . . ..

(a)
2m∑

k=0

(−1)k

[
4m + 1

2k

]
F2k = 0.

(b)
2m+1∑

k=0

(−1)k

[
4m + 3

2k + 1

]
F2k+1 = 0.

(c)
4m∑

k=0

(−1)k(k+1)/2

[
4m

k

]
Fk = 0.

Solution by Russell J. Hendel, Towson University, Towson, MD

(a) Let x = 4m + 1. We prove the stronger assertion

[
x

2k

]
=

[
x

x− (2k − 1)

]
, (1)
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from which it immediately follows that an alternating sum would vanish. To prove (1) note
that[

x

2k

]
F2k =

FxFx−1 · · ·Fx−2k+1

F1F2 · · ·F2k−1F2k

F2k, by definition of the Fibonomial coefficient,

=
FxFx−1 · · ·Fx−2k+2

F1F2 · · ·F2k−1

Fx−2k+1, by cancellation and rearrangement,

=

[
x

2k − 1

]
Fx−2k+1, by definition of the Fibonomial coefficient,

=

[
x

x− (2k − 1)

]
Fx−2k+1, by the symmetry property of Fibonomial coefficients.

(b) Similarly, letting x = 4m + 3 we prove the stronger assertion that[
x

2k + 1

]
F2k+1 =

FxFx−1 · · ·Fx−2k

F1F2 · · ·F2k−1F2k+1

F2k+1, by definition of the Fibonomial coefficient,

=
FxFx−1 · · ·Fx−2k−1

F1F2 · · ·F2k

Fx−2k, by cancellation and rearrangement,

=

[
x

2k

]
Fx−2k, by definition of the Fibonomial coefficient,

=

[
x

x− 2k

]
Fx−2k, by the symmetry property of Fibonomial coefficients,

from which it immediately follows that an alternating sum vanishes.
(c) Letting x = 4m as identical argument shows that[
x

k

]
Fk =

FxFx−1 · · ·Fx−k+1

F1F2 · · ·Fk

Fk, by definition of the Fibonomial coefficient,

=
FxFx−1 · · ·Fx−k

F1F2 · · ·Fk−1

Fx−k+1, by cancellation and rearrangement,

=

[
x

k − 1

]
Fx−k+1, by definition of the Fibonomial coefficient,

=

[
x

x− (k − 1)

]
Fx−(k−1), by the symmetry property of Fibonomial coefficients.

(−1)k(k+1)
2

is negative for k ≡ 1, 2 (mod 4), and positive for k ≡ 3, 4 (mod 4) showing that
appropriate pairs cancel in the sum. This completes the proof.

Also solved by G. C. Gruebel and the proposer.

A Simple Limit

B-1041 Proposed by Paul S. Bruckman, Sointula, Canada
(Vol. 45.4, November 2007)

Prove that the following expression has a limit as n →∞, and find the limit.

{(Fn+1)
1/2 + (Fn)1/2}/(Fn+2)

1/2.
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Solution by Harris Kwong, SUNY Fredonia, Fredonia, NY

Since limk→∞ Fk = αk/
√

5, we find

lim
n→∞

(Fn+1)
1/2 + (Fn)1/2

(Fn+2)1/2
=

α
n+1

2 + α
n
2

α
n+2

2

=

√
α + 1

α
.

Also solved by Charles K. Cook and Rebecca Hillman (jointly), Steve Edwards,
G. C. Greubel, Pentti Hankkren, Russell J. Hendel, Maitland A. Rose, H.-J.
Seiffert, and the proposer.

Triangular and Fibonacci Numbers Inequality

B-1042 Proposed by José Luis Dı́az-Barrero and Juan José Egozcue, Univer-
sidad de Cataluña, Barcelona, Spain
(Vol. 45.4, November 2007)

Let Tn be the nth triangular number defined by Tn =
(

n+1
2

)
for all n ≥ 1. Prove that

1

n2

n∑

k=1

(
Tk

Fk

)2

≥ T 2
n+1

9FnFn+1

.

Solution by Paul S. Bruckman, Sointula, Canada

Note that nTn+1/3 = n(n + 1)(n + 2)/(2 · 3) =
(

n+2
3

)
= Pn. Also,

∑n
k=1 Tk = Pn. Now

n∑

k=1

Tk =
n∑

k=1

(
Tk

Fk

)
Fk ≤

√√√√
n∑

k=1

(
Tk

Fk

)2

√√√√
n∑

k=1

F 2
k ,

by the Cauchy-Schwartz inequality. Also, we employ the well-known identity
n∑

k=1

F 2
k = FnFn+1.

Then,
n∑

k=1

(
Tk

Fk

)2

≥ P 2
n

FnFn+1

=
n2T 2

n+1

9FnFn+1

,

which is equivalent to the desired relation.

Also solved by Russell J. Hendel, Harris Kwong, H.-J. Seiffert, Kenneth B.
Davenport, and the proposer.
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Estimate for a Weighted Product

B-1043 Proposed by José Luis Dı́az-Barrero and Miquel Grau-Sánchez, Uni-
versidad de Cataluña, Barcelona, Spain
(Vol. 45.4, November 2007)

Let α1, α2, . . . , αn be positive real numbers. Prove that(
FnFn+1

n

)n

≥
∏

cyclic

α1F
2
1 + · · ·+ αnF

2
n

α1 + · · ·+ αn

≥ (F1F2 · · ·Fn)2.

Solution by H.-J. Seiffert, Thorwaldsenstr. 13, D-12157, Berlin, Germany

First, we prove that, for all positive real numbers x1, x2, . . . , xn,(
1

n

n∑

k=1

xk

)n

≥
n∏

k=1

α1xk + · · ·+ αnxk+n−1

α1 + · · ·+ αn

≥ x1x2 · · · xn, (1)

where all indices great than n are to be reduced modulo n. If Ak = α1xk + · · ·+ αnxk+n−1,
k = 1, 2, . . . , n, and S = α1 + · · · + αn, then, by the weighted Arithmetic-Geometric Mean
Inequality,

Ak/S ≥
(
xα1

k xα2
k+1 · · · xαn

k+n−1

)1/S
, k = 1, 2, . . . , n.

Taking the product over k = 1, 2, . . . , n gives the right-hand side inequality of (1). The
Arithmetic-Geometric Mean Inequality implies

n∏

k=1

(Ak/S) ≤
(

1

n

n∑

k=1

(Ak/S)

)n

=

(
1

n

n∑

k=1

xk

)n

.

This proves the left-hand side inequality of (1).
To solve the present proposal, in (1) take xk = F 2

k , k = 1, . . . , n, and use the identity∑n
k=1 F 2

k = FnFn+1, which is equation (I3) of [1].
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Also solved by Paul S. Bruckman, and the proposer.
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