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include references rather than quoting “well-known results.”

The content of the problem sections of The Fibonacci Quarterly are all available on the web
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BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1349 (Corrected) Proposed by Toyesh Prakash Sharma (undergraduate), Agra
College, Agra, India.

For any integer n ≥ 2, show that

FLn
n F

2Fn+1

n+1 LFn
n ≤ F

2Fn+1

2n .

B-1351 Proposed by Hideyuki Ohtskua, Saitama, Japan.

The sequences {Un} and {Vn} are defined by

U0 = 0, U1 = 1, and Un+2 = 4Un+1 − Un,

and
V0 = 2, V1 = 4, and Vn+2 = 4Vn+1 − Vn,

for any integer n. Prove that
∞∑
n=1

tan−1 1

4U2
n

=
π

12
, and

∞∑
n=−∞

tan−1 3

V 2
n

=
π

3
.
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B-1352 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.

Find all integers n ≥ 0 for which n2 − F2n is a perfect square. Also prove that no integer
n > 0 exists such that n2 + F2n is a perfect square.

B-1353 Proposed by Kenny B. Davenport, Dallas, PA.

Prove that

(i) 4

n∑
k=1

F6k + 3

n∑
k=1

F2k = 5
(
F 3
2n+1 − 1

)
.

(ii) 4

n∑
k=1

L6k − 3

n∑
k=1

L2k = L3
2n+1 − 1.

B-1354 Proposed by Davide Rotondo, Brescia, Italy.

Define a trapezoid of numbers a(n, k), where n ≥ 0, and 0 ≤ k ≤ n+ 1, as follows. Define
a(0, 0) = 0, and a(0, 1) = 1. For n ≥ 1, define a(n, 0) = a(n, n+ 1) = 1, and

a(n, k) = a(n− 1, k − 1) + a(n− 1, k) for 1 ≤ k ≤ n.

The first eight rows of the trapezoid are shown below.

n = 0 0 1
n = 1 1 1 1
n = 2 1 2 2 1
n = 3 1 3 4 3 1
n = 4 1 4 7 7 4 1
n = 5 1 5 11 14 11 5 1
n = 6 1 6 16 25 25 16 6 1
n = 7 1 7 22 41 50 41 22 7 1

Prove that, if n is prime, then for 2 ≤ k ≤ n − 1, the integer n divides a(n, k) − 1 when k is
even, and n divides a(n, k) + 1 when k is odd.

B-1355 Proposed by Albert Stadler, Herrliberg, Switzerland.

Let pn(x) be the polynomial of degree n defined by

pn(x) = e−x2 dn

dxn
(
ex

2)
.

Prove that for all integers m,n ≥ 1,

F
n/2
2m+1 pn(Fm+2) =

n∑
k=0

(
n

k

)
F k
mFn−k

m+1 pk
(√

F2m+1

)
pn−k

(√
F2m+1

)
.
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SOLUTIONS

We Only Need the First Term!

B-1331 Proposed by Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania.
(Vol. 61.3, August 2023)

Prove that
F 2
n+2

F 2
n−1

+
Fn+2

Fn
+

Fn+2

Fn+1
≥ 9 for all integers n ≥ 2.

Solution by Wei-Kai Lai, University of South Carolina Salkehatchie, Walterboro,
SC.

Since Ft > 0 and Ft+1 ≥ Ft for all integers t ≥ 1, we have that

F 2
n+2

F 2
n−1

=

(
Fn−1 + 2Fn

Fn−1

)2

=

(
1 + 2 · Fn

Fn−1

)2

≥ 32 = 9.

Therefore, only the first term is needed for the solution.
Indeed, we can improve the inequality by applying the AM-GM inequality to the two terms

on the left side of the inequality. We find that

Fn+2

Fn
+

Fn+2

Fn+1
=

(
1 +

Fn+1

Fn

)(
1 +

Fn

Fn+1

)
= 2 +

Fn+1

Fn
+

Fn

Fn+1
≥ 4.

For a fixed n, the equality for
F 2
n+2

F 2
n−1

≥ 9 requires that Fn = Fn−1, or n = 2. However, the

equality for Fn+2

Fn
+ Fn+2

Fn+1
≥ 4 requires that Fn = Fn+1, or n = 1. Therefore, the equality of

these two inequalities can never happen at the same time. We conclude that

F 2
n+2

F 2
n−1

+
Fn+2

Fn
+

Fn+2

Fn+1
> 13.

Editor’s Note: Grimaldi used the addition formula Fm+p = Fm+1Fp + FmFp−1 to derive the

inequality
Fn+k

Fn−1
≥ Fk+2. Following the same method Lai used above, we see that, for k ≥ 2,

F 2
n+k

F 2
n−1

+
Fn+k

Fn
+

Fn+k

Fn+1
> F 2

k+2 + 4.

Also solved by Thomas Achammer, Michel Bataille, Brian D. Beasley, Charles
K. Cook and Michael R. Bacon (jointly), Kenny B. Davenport, the Eagle Problem
Solvers (Georgia Southern University), I. V. Fedak, Dmitry Fleischman, G. C. Greubel,
Ralph P. Grimaldi, Won Kyun Jeong, Hari Kishan, Carl Libis, Hideyuki Ohtsuka,
Ángel Plaza, Patrick Rappa (undergradudate), Henry Ricardo, Alice Souza, Gabriela
Destazio, Iuri Corrêa, and Laura Silva (undergraduates) (jointly), Albert Stadler,
David Terr, Caitlyn Tyson (undergraduate), Daniel Văcaru, Andrés Ventas, and
the proposer.
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Two Tribonacci Series

B-1332 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 61.3, August 2023)

Let Tn be the nth Tribonacci number, defined by T0 = 0, T1 = T2 = 1, and Tn = Tn−1 +
Tn−2 + Tn−3 for n ≥ 3. Prove that

(i)
∞∑
n=1

(−1)n

TnTn+1Tn+2Tn+4
= − 1

16
,

(ii)
∞∑
n=1

1

TnTn+1Tn+4
=

3

16
.

Solution by Albert Stadler, Herrliberg, Switzerland.

(i) We have

1

2TnTn+1Tn+2Tn+3
+

1

2Tn+1Tn+2Tn+3Tn+4
=

Tn+4 + Tn

2TnTn+1Tn+2Tn+3Tn+4

=
Tn+3 + Tn+2 + Tn+1 + Tn

2TnTn+1Tn+2Tn+3Tn+4
=

2Tn+3

2TnTn+1Tn+2Tn+3Tn+4
=

1

TnTn+1Tn+2Tn+4
.

Thus,

∞∑
n=1

(−1)n

TnTn+1Tn+2Tn+4
=

∞∑
n=1

(−1)n

2TnTn+1Tn+2Tn+3
−

∞∑
n=1

(−1)n+1

2Tn+1Tn+2Tn+3Tn+4

= − 1

2T1T2T3T4
= − 1

16
.

(ii) We have

Tn + Tn+2

2TnTn+1Tn+2Tn+3
− Tn+1 + Tn+3

2Tn+1Tn+2Tn+3Tn+4
=

Tn+4(Tn + Tn+2)− Tn(Tn+1 + Tn+3)

2TnTn+1Tn+2Tn+3Tn+4

=
Tn+4(Tn + Tn+2)− Tn(Tn+4 − Tn+2)

2TnTn+1Tn+2Tn+3Tn+4
=

Tn+2(Tn+4 + Tn)

2TnTn+1Tn+2Tn+3Tn+4

=
2Tn+2Tn+3

2TnTn+1Tn+2Tn+3Tn+4
=

1

TnTn+1Tn+4
.

Hence,

∞∑
n=1

1

TnTn+1Tn+4
=

∞∑
n=1

Tn + Tn+2

2TnTn+1Tn+2Tn+3
−

∞∑
n=1

Tn+1 + Tn+3

2Tn+1Tn+2Tn+3Tn+4

=
T1 + T3

2T1T2T3T4
=

3

16
.

Also solved by Thomas Achammer, Michel Bataille, Dmitry Fleischman, Robert
Frontczak, Yunyong Zhang, and the proposer.
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A Fibonacci Equation

B-1333 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.
(Vol. 61.3, August 2023)

Find all solutions of the equation

(Fa + 1)(Fb + 1)(Fc + 1) = 3FaFbFc.

Solution by Michel Bataille, Rouen, France.

If (a, b, c) is a solution, then any permutation of this triple is obviously also a solution. This
is understood below. We shall prove that the only solutions (up to permutations) are the
triples (0,−2, c), (1, 4, 6), (−1, 4, 6), (2, 4, 6), (3, 3, 4), (3,−3, 4), and (−3,−3, 4), for any integer
c.

Let (a, b, c) be a solution. If |Fa|, |Fb|, |Fc| ≥ 3, then Fa, Fb, Fc ̸= 0, and(
1 +

1

Fa

)(
1 +

1

Fb

)(
1 +

1

Fc

)
= 3, (1)

with 1
Fa

, 1
Fb
, 1
Fc

∈
[
−1
3 ,

1
3

]
. We deduce that 1 + 1

Fa
, 1 + 1

Fb
, 1 + 1

Fc
∈
[
2
3 ,

4
3

]
, and therefore(

1 +
1

Fa

)(
1 +

1

Fb

)(
1 +

1

Fc

)
≤ 64

27
,

in contradiction with (1). Thus, m := min(|Fa|, |Fb|, |Fc|) ∈ {0, 1, 2}.
• If m = 0, one of Fa, Fb, Fc equals 0, say Fa = 0. Then a = 0, and (Fb +1)(Fc +1) = 0.
Hence, b = −2 or c = −2, say b = −2, so that (a, b, c) = (0,−2, c).

• If m = 1, we may assume, without loss of generality, that |Fa| = 1 and |Fb|, |Fc| ≥ 1.
Since FaFbFc ̸= 0, we have Fa = 1. Then, 2(Fb + 1)(Fc + 1) = 3FbFc, which can
be rewritten as (Fb − 2)(Fc − 2) = 6. It is readily seen that {Fb − 2, Fc − 2} =
{−2,−3}, {2, 3}, {−1,−6} cannot occur. Hence {Fb − 2, Fc − 2} = {1, 6}, so that
{Fb, Fc} = {3, 8}, and {b, c} = {4, 6}. We thus obtain the triples (1, 4, 6), (−1, 4, 6),
and (2, 4, 6).

• If m = 2, say |Fa| = 2 and |Fb|, |Fc| ≥ 2. Then, Fa = 2 (no Fibonacci number equals
−2) so that 3(Fb + 1)(Fc + 1) = 6FbFc, which writes as (Fb − 1)(Fc − 1) = 2. Since
{Fb − 1, Fc − 1} = {−1,−2} cannot occur, we must have {Fb, Fc} = {2, 3}. This leads
to the triples (3, 3, 4), (3,−3, 4), and (−3,−3, 4).

Conversely, all the triples found above are solutions. This completes the proof.

Also solved by Thomas Achammer, the Eagle Problem Solvers (Georgia Southern
University), I. V. Fedak, Dmitry Fleischman, Raphael Schumacher (graduate
student), Albert Stadler, Andrés Ventas, Dan Weiner, Yunyong Zhang, and the
proposer.
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An Inequality with an Improvement

B-1334 Proposed by Toyesh Prakash Sharma (student), Agra College, Agra,
India.
(Vol. 61.3, August 2023)

For all integers n ≥ 3, show that

(Fn+1 − 1)2

(Fn − 1)(Ln − 1)
+

(Fn − 1)2

(Fn−1 − 1)(Ln−1 − 1)
< F2n+1.

Solution by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National University,
Ivano-Frankivsk, Ukraine.

For n = 3, the problem is incorrect, because F2 − 1 = 0. Next, using Fk − 1 ≥ 1 and
Lk − 1 > 1 for k ≥ 3, we obtain, for n ≥ 4,

(Fn+1 − 1)2

(Fn − 1)(Ln − 1)
+

(Fn − 1)2

(Fn−1 − 1)(Ln−1 − 1)
< F 2

n+1 + F 2
n = F2n+1.

We can prove a stronger result using the inequalities

Fk − 1 < Fk−2 + Fk − 1 = Lk−1 − 1

and
Fk − 1 ≤ Fk − 1 + Fk−3 − 1 = 2(Fk−1 − 1)

for k ≥ 3. We find, for n ≥ 4,

(Fn+1 − 1)2

(Fn − 1)(Ln − 1)
+

(Fn − 1)2

(Fn−1 − 1)(Ln−1 − 1)
< 2 + 2 = 4.

Also solved by Thomas Achammer, Michel Bataille, Brian D. Beasley, Dmitry
Fleischman, Robert Frontczak, G. C. Greubel, Ralph P. Grimaldi, Won Kyun
Jeong, Wei-Kai Lai, Hideyuki Ohtsuka, Ángel Plaza, Albert Stadler, Caitlyn
Tyson (undergraduate), Andrés Ventas, and the proposer.

A Finite Product of Generalized Fibonacci Numbers

B-1335 Proposed by Michel Bataille, Rouen, France.
(Vol. 61.3, August 2023)

Let the sequence {Gn}n≥0 be defined by arbitrary G0, G1 ∈ N, and the recurrence Gn+1 =
Gn +Gn−1 for any integer n ≥ 1. If m and n are integers such that m ≥ 1 and n ≥ 0, prove
that

m∏
k=1

Gn +Gn+2k+1

Gn+2k

is a Fibonacci number.

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Each factor in the product is equal to a Lucas number. Explicitly we have

Gn +Gn+2k+1

Gn+2k
= L2k . (2)
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The Binet’s formula for Gn takes the form of Gp = Aαp + Bβp for some constants A and B,
the values of which depend on the initial values. Then

Gn+2kL2k =
(
Aαn+2k +Bβn+2k

)(
α2k + β2k

)
= Aαn+2k+1

+Bβn+2k+1
+Aαn +Bβn

= Gn+2k+1 +Gn.

This proves our assertion.
Note that for k = 1, L2 = 3 = F4. With the identity FnLn = F2n, we obtain

m∏
k=1

Gn +Gn+2k+1

Gn+2k
=

m∏
k=1

L2k = F4

m∏
k=2

L2k = F2m+1 .

Editor’s Notes: It is clear that (2) is the key to the solution. Ohtsuka derived it by applying
Identity 10(a) from [2, page 176]:

Gs+t + (−1)tGs−t = GsLt.

Smith noted that (2) can be obtained from a modified version of Problem 20 from [1, page 114].
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Also solved by Thomas Achammer, the Eagle Problem Solvers (Georgia Southern
University), I. V. Fedak, Dmitry Fleischman, Robert Frontczak, G. C. Greubel,
Won Kyun Jeong, Hideyuki Ohtsuka, Raphael Schumacher (graduate student),
Jason L. Smith, Albert Stadler, David Terr, Yunyong Zhang, and the proposer.

Correction: Ell Torek’s name was misspelled in the list of solvers of Problem B-1325 in the
February issue. The section editor apologizes to Ell and the readers for the mistakes he made
in the past two issues.
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