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Each problem or solution should be typed on separate sheets. Solutions to problems in this
issue must be received by May 15, 2025. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results.”

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1356 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Let {Pn}n≥0 be the Padovan sequence, defined by P0 = P1 = P2 = 1, and Pn = Pn−2+Pn−3

for n ≥ 3. Evaluate
∞∑
n=0

(−1)n

L2PnL2Pn+1L2Pn+2L2Pn+3L2Pn+6L2Pn+7

.

B-1357 Proposed by Toyesh Prakash Sharma (undergraduate), Agra College,
Agra, India.

Show that

(i) F2n+1 exp
(
1− Fn

Fn+1

)
≥ 2F 2

n+1, where n ≥ 1.

(ii) (L2n + L2n+2) exp
(
1− Ln

Ln+1

)
≥ 2L2

n+1, where n ≥ 0.
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B-1358 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.

Let a and b be any two real numbers with a < b. Show that for all integers n ≥ 1,
n∑

k=1

(
n

k

)
(−1)k bk − ak

k
=

n∑
k=1

(−1)k (b− 1)k − (a− 1)k

k
.

Proposer’s Remark : Using this identity, one can show that, for examples,

n∑
k=1

(
n

k

)
(−1)k 2k − 1

k
=

n∑
k=1

(−1)k

k
, and

n∑
k=1

(
n

k

)
(−1)k F2k

k
=

n∑
k=1

(−1)kFk

k
.

B-1359 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove that
∞∑
n=1

1

nF2n
=

√
5 lim

r→∞
log

αr2

L1L3L5 · · ·L2r−1
.

B-1360 Proposed by Michel Bataille, Rouen, France.

Let An = (ai,j) be the n× n matrix with entries ai,i = F2i−1L2i, and

ai.j = F2jL2j−1, i, j = 1, 2, . . . , n, i ̸= j.

Prove that 5 det(An) = 2n−1(L4n+1 + 9− 5n).

SOLUTIONS

Make the Sums Telescope!

B-1336 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.
(Vol. 61.4, November 2023)

Show the following identities:
∞∑
n=1

F2n

L4n + 18
=

1

8
, and

∞∑
n=1

F4n

(L4n + 18)2
=

9

800
.

Solution by Hans J. H. Tuenter, Toronto, Canada.

Both sums are basically wrappers for telescoping sums. For the first part of the question,
we start with

a−1∑
n=0

1

F2n−a
=

∞∑
n=0

(
1

F2n−a
− 1

F2n+a

)
=

∞∑
n=0

F2n+a − F2n−a

F2n+aF2n−a
,

where a is a positive integer and odd (to avoid a division by zero). When a is odd, the product
formulas 5FsFt = Ls+t − (−1)tLs−t and FsLt = Fs+t + (−1)tFs−t yield

5F2n+aF2n−a = L4n + L2a, and F2nLa = F2n+a − F2n−a.
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A simple substitution in the right-hand side of the above identity and a little rearranging gives

∞∑
n=0

F2n

L4n + L2a
=

1

5La

a−1∑
n=0

1

F2n−a
.

For a = 3, the right-hand side evaluates to 1/8. As L6 = 18, this gives the first summation
identity that needed to be proved. Note that the Fibonacci numbers at negative indices are
well defined and satisfy the reflection formula F−n = (−1)n+1Fn.

For the second part of the question, we use telescoping sums (as before) and the first product
formula to obtain

a−1∑
n=0

1

F 2
2n−a

=
∞∑
n=0

F 2
2n+a − F 2

2n−a

F 2
2n+aF

2
2n−a

, and F4nF2a = F 2
2n+a − F 2

2n−a,

where a is again an odd, positive integer. This gives

∞∑
n=0

F4n

(L4n + L2a)2
=

1

25F2a

a−1∑
n=0

1

F 2
2n−a

.

For a = 3, the right-hand side evaluates to 9/800, and establishes the second summation
identity that needed to be proved.

In closing, we note that, in a completely analogous manner, one can derive the identities

∞∑
n=0

L2n

L4n − L2a
=

1

La

a−1∑
n=0

1

L2n−a
, and

∞∑
n=0

F4n

(L4n − L2a)2
=

1

5F2a

a−1∑
n=0

1

L2
2n−a

,

where a is an odd, positive integer. The Lucas equivalents of the identities in the proposed
problem are

∞∑
n=0

L2n

L4n − 18
= − 1

16
, and

∞∑
n=0

F4n

(L4n − 18)2
=

33

640
.

Note that the Lucas numbers at negative indices are well defined and satisfy the reflection
formula L−n = (−1)nLn.

Also solved by Thomas Achammer, Michel Bataille, Brian Bradie, I. V. Fedak,
Dmitry Fleischman, Won Kyun Jeong, Hideyuki Ohtsuka, Ángel Plaza, Albert
Stadler, Yunyong Zhang, and the proposer.

Extendable to Generalized Fibonacci Numbers

B-1337 Proposed by D. M. Bătineţu-Giurgiu, “Matei Basarab” National
College, Bucharest, Romania, and Neculai Stanciu, “George Emil
Palade” School, Buzău, Romania.
(Vol. 61.4, November 2023)

Prove that

(i)
F 3
n

Fn−1
+

F 3
n+2

Fn
−

F 4
n+1

Fn−1Fn
= 2Fn+1Fn+2 for any integer n ≥ 3,

(ii)
L3
n

Ln−1
+

L3
n+2

Ln
−

L4
n+1

Ln−1Ln
= 2Ln+1Ln+2 for any integer n ≥ 1.
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Solution by Wei-Kai Lai, University of South Carolina Salkehatchie, Walterboro,
SC.

We shall prove the general identity

G3
n

Gn−1
+

G3
n+2

Gn
−

G4
n+1

Gn−1Gn
= 2Gn+1Gn+2

for any nonzero sequence {Gi} satisfying the recursive formula Gi+Gi+1 = Gi+2. The identity
is equivalent to

G4
n +Gn−1G

3
n+2 −G4

n+1 = 2Gn−1GnGn+1Gn+2,

which can also be rearranged, and factored into

Gn−1Gn+2(G
2
n+2 − 2GnGn+1) = (G2

n+1 +G2
n)(Gn+1 +Gn)(Gn+1 −Gn).

Therefore, we only need to show that

G2
n+2 − 2GnGn+1 = G2

n+1 +G2
n,

or equivalently,

G2
2 = (Gn+1 +Gn)

2.

The last equation is true according to the recursive formula, hence proving the new identity.
Since Lucas numbers are nonzero, the second identity in the original problem is true for any

integer n. The first identity, however, is true only for integers n ≥ 2, to avoid the denominator
Fn−1 being zero.

Editor’s Notes:

1) The argument above works, provided Gn−1, Gn ̸= 0. This leads us to investigate the zero-
multiplicity of {Gn}; that is, the number of indices n for which Gn = 0. Here are some remarks
that Tuenter included with his solution.

For general recurrent sequences the zero-multiplicity is a difficult question. The
American mathematician Morgan Ward (1901–1963) studied the multiplicity
of general second-order linear recurrences, with arbitrary initial values, in the
1930s. A summary of Ward’s conjectures, some of which were not resolved until
the late 1970s, can be found in [1]. For the Tribonacci numbers it was shown,
only a mere decade ago, that there are just four Tribonacci numbers that are
zero [2]. In sharp contrast, for the generalized Fibonacci sequence, excluding
the trivial case when both initial values are zero and the sequence consists of
all zeros, the zero-multiplicity is easily determined. If Ga = 0, then it is not
difficult to show that Gn = Ga+1Fn−a. Thus, the sequence {Gn} has exactly
one zero if and only if it is a scaled and/or shifted version of the Fibonacci
sequence.

2) The proposers used a different approach in their solution. They first established the identity

x3

(x− y)(x− z)
+

y3

(y − z)(y − x)
+

z3

(z − x)(z − y)
= x+ y + z,

and then setting x = Fn, y = Fn+1, and z = Fn+2, and their Lucas equivalents, respectively,
to derive the two identities.
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Also solved by Thomas Achammer, Michel Bataille, Brian Bradie, Charles K. Cook,
Steve Edwards, I. V. Fedak, Dmitry Fleischman, Robert Frontczak, Ralph P. Grimaldi,
Won Kyun Jeong, Hari Kishan, William Knuth and Connor Salch (both under-

graduates) (jointly), Hideyuki Ohtsuka, Ángel Plaza, Patrick Rappa, Raphael
Schumacher (graduate student), Albert Stadler, David Terr, Hans J. H. Tuenter,
Daniel Văcaru, Yunyong Zhang, Nicusor Zlota, and the proposer.

They Come From the Same Inequality

B-1338 Proposed by Quang Hung Tran, HSGS School, Vietnam National
University at Hanoi, Hanoi, Vietnam.
(Vol. 61.4, November 2023)

Prove that, for any integer n ≥ 0,

(a)
1

Fn+1
+

1

Fn+2
>

16

9Ln+1 − 16Fn
,

(b)
1

Ln+1
+

1

Ln+2
>

16

45Fn+1 − 16Ln
.

Solution by Albert Stadler, Herrliberg, Switzerland.

We note that

9Ln+1 − 16Fn = 9(Fn + Fn+2)− 16Fn

= 9Fn+2 − 7Fn

= 9Fn+2 − 7(Fn+2 − Fn+1)

= 2Fn+2 + 7Fn+1,

and

45Fn+1 − 16Ln = 9(Ln + Ln+2)− 16Ln

= 9Ln+2 − 7Ln

= 9Ln+2 − 7(Ln+2 − Ln+1)

= 2Ln+2 + 7Ln+1.

Set x = Fn+1 and y = Fn+2 in part (a), and x = Ln+1 and y = Ln+2 in part (b). Both
inequalities then read as

1

x
+

1

y
>

16

7x+ 2y
,

which is equivalent to

7x2 − 7xy + 2y2 > 0.

This inequality holds true for x, y ̸= 0, since

7x2 − 7xy + 2y2 = 7
(
x− y

2

)2
+

y2

4
> 0,
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thereby completing the proof.

Also solved by Thomas Achammer, Michel Bataille, Charles K. Cook and Michael
R. Bacon (jointly), I. V. Fedak, Dmitry Fleischman, Robert Frontczak, Won Kyun

Jeong, Hideyuki Ohtsuka, Valentina Osorio Osorio (undergraduate), Ángel Plaza,
Yunyong Zhang, and the proposer.

Floor After Floor

B-1339 Proposed by Michel Bataille, Rouen, France.
(Vol. 61.4, November 2023)

Let n be a positive integer. Prove that⌊√
2
(
F 2
n+1 − Fn+1Fn−1 + F 2

n−1

) ⌋
−
⌊√

Fn+1Fn−1

⌋
= Fn.

Solution by Won Kyun Jeong, Kyungpook National University, Daegu, Korea.

By Catalan’s identity, Fn+1Fn−1 = F 2
n + (−1)n. Then

F 2
n+1 − Fn+1Fn−1 + F 2

n−1 = (Fn+1 − Fn−1)
2 + Fn+1Fn−1 = 2F 2

n + (−1)n.
Hence, we obtain √

2(F 2
n+1 − Fn+1Fn−1 + F 2

n−1) =
√
4F 2

n + 2(−1)n,√
Fn+1Fn−1 =

√
F 2
n + (−1)n.

If n is an even integer, then

2Fn <
√

4F 2
n + 2 < 2Fn + 1, and Fn <

√
F 2
n + 1 < Fn + 1.

If n is an odd integer, then

2Fn − 1 <
√
4F 2

n − 2 < 2Fn, and Fn − 1 <
√
F 2
n − 1 < Fn.

It follows that ⌊√
2(F 2

n+1 − Fn+1Fn−1 + F 2
n−1)

⌋
=

{
2Fn, if n is even;

2Fn − 1, if n is odd;

and ⌊√
Fn+1Fn−1

⌋
=

{
Fn, if n is even;

Fn − 1, if n is odd.

The identity in the problem statement follows immediately.

Also solved by Thomas Achammer, Brian Bradie, I. V. Fedak, Dmitry Fleischman,
Hideyuki Ohtsuka, Ángel Plaza, Raphael Schumacher (graduate student), Albert
Stadler, David Terr, Yunyong Zhang, and the proposer.
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A Binomial Sum of Fibonacci Polynomials

B-1340 Proposed by Hans J. H. Tuenter, Toronto, Canada.
(Vol. 61.4, November 2023)

Let a, b, and n be integers, with n nonnegative, and x any real or complex number. Evaluate

n∑
i=0

(
n

i

)
Fn−i
a−1 (x)F

i
a(x)Fb+i(x),

where Fn(x) are the Fibonacci polynomials, defined by the recurrence relation Fn+2(x) =
xFn+1(x) + Fn(x), with initial conditions F0(x) = 0 and F1(x) = 1. Note that the Fibonacci
polynomials are defined at negative indices by extending the above recurrence relation and
that they satisfy the relation F−n(x) = (−1)n+1Fn(x).

Solution by Michel Bataille, Rouen, France.

We know that for all m ∈ Z,

Fm(x) =
αm(x)− βm(x)

α(x)− β(x)
,

where α(x) = x+
√
x2+4
2 , and β(x) = x−

√
x2+4
2 are the roots of the characteristic equation

q2 − xq − 1 = 0. Using this Binet formula, it is easy to show that

Fm−1(x) + α(x)Fm(x) = αm(x),

Fm−1(x) + β(x)Fm(x) = βm(x).

Now, let

A(x) =
n∑

i=0

(
n

i

)
Fn−i
a−1 (x)F

i
a(x)α

i(x),

B(x) =
n∑

i=0

(
n

i

)
Fn−i
a−1 (x)F

i
a(x)β

i(x).

From the binomial theorem, we have

A(x) = (Fa−1(x) + α(x)Fa(x))
n = αan(x).

and, similarly, B(x) = βan(x). It follows that

n∑
i=0

(
n

i

)
Fn−i
a−1 (x)F

i
a(x)Fb+i(x) =

αb(x)A(x)− βb(x)B(x)

α(x)− β(x)

=
αb(x)αan(x)− βb(x)βan(x)

α(x)− β(x)

=
αan+b(x)− βan+b(x)

α(x)− β(x)

= Fan+b(x).
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Editor’s Notes: Both the proposer and Frontczak mentioned that the result can be extended
to the Lucas polynomials:

n∑
i=0

(
n

i

)
Fn−i
a−1 (x)F

i
a(x)Lb+i(x) = Lan+b(x).

Frontczak also noted that, for an odd integer m,
n∑

i=0

(
n

i

)
Fn−i
m(a−1)(x)F

i
ma(x)Fm(b+i)(x) = Fn

m(x)Fm(an+b)(x),

with a similar result holding for the Lucas polynomials.

Proposer’s Historical Notes:

1) Problem B-1340 is a generalization of Advanced Problem H-13 [1], which asked the readers
to prove that

Fn =
r∑

i=0

(
r

i

)
F r−i
a−1F

i
aFn+i−ar.

One of the proposers, Verner E. Hoggatt, Jr. (1921–1980), was also a founding member of the
Fibonacci Association and a long-time editor of The Fibonacci Quarterly.

2) The Dutch mathematician Jan Cornelis Kluyver (1860–1932) proposed the same problem
as H-13 in 1928 [2], in a periodical dedicated to mathematical problems and their solutions,
published by the Dutch Mathematical Society. The identity in B-1340 is a special case of a
more general and complex identity for an arbitrary, linear recurrent sequence that was posed
(also in 1928) as a problem by another Dutch mathematician, Johannes Gaultherus van der
Corput (1890–1975) [3]. Kluyver was van der Corput’s thesis advisor at Leiden University.

Just goes to show that, with “Things Fibonacci,” one can never be totally certain that a result
is new.
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Also solved by I. V. Fedak, Sergio Falcón and Ángel Plaza (jointly), Dmitry
Fleischman, Robert Frontczak, Albert Stadler, Yunyong Zhang, and the proposer.
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