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PROBLEMS PROPOSED IN THIS ISSUE

H-801 Proposed by Refik Keskin, Sakarya University, Turkey and Florian Luca,
Wits, Johannesburg, South Africa.

Let P ≥ 3 be an integer and (Vn)n≥0 be the sequence given by V0 = 2, V1 = P and
Vn+2 = PVn+1 − Vn for n ≥ 0. Assume that 3 ∤ n. Show that:

(i) P + 1 | Vn + 1;
(ii) If Vn + 1 = (P + 1)F (P ), then F (−1) = n if n ≡ 1 (mod 3) and F (−1) = −n if n ≡ 2

(mod 3).

H-802 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Let a, b, c, d be positive integers such that a ≥ b, c ≥ d and b and d have the same parity.
Then for all integers n ≥ 1, prove that

(

n
∑

k=1

FFk+aFLk+c

)(

n
∑

k=1

FFk+bFLk+d

)

≥
(

n
∑

k=1

FFk+aFLk+d

)(

n
∑

k=1

FFk+bFLk+c

)

.

H-803 Proposed by Ángel Plaza, Gran Canaria, Spain.

Assume that the consecutive numbers in the Lucas sequence are coordinates of the vertices
of a polygon labeled counterclockwise in the Cartesian system:

A1(L1, L2); A2(L3, L4), A3(L5, L6); . . . ;An(L2n−1, L2n).

What is the area of such a polygon?
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H-804 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove that

(i)
∞
∑

n=1

1

αn(n−3)L2L4L6 · · ·L2n
= 1;

(ii)

∞
∑

n=1

1

α2Fn−1L2F1
L2F2

L2F3
· · ·L2Fn

=
1

α2
;

(iii)

∞
∑

n=1

1

α2Ln−1L2L1
L2L2

L2L3
· · ·L2Ln

=
1

α6
.

SOLUTIONS

Nested Radicals and Fibonacci Numbers

H-767 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 53, No. 1, February 2015)

Prove that

lim
n→∞

√

√

√

√

√

F 2
2 +

√

√

√

√

F 2
4 +

√

F 2
8 +

√

· · ·+
√

F 2
2n = 3.

Solution by the proposer.

We use Catalan’s identity

F 2
m − Fm+rFm−r = (−1)m−rF 2

r .

Letting m = 2n + 2 and r = 2n in the above identity we have

F 2
2n+2 − F2n+1+2 = F 2

2n .

That is

F2n+2 =
√

F 2
2n + F2n+1+2.

Using this identity repeatedly we get

3 = F21+2 =
√

F 2
21

+ F22+2 =

√

F 2
21

+
√

F 2
22

+ F23+2

= · · · =

√

√

√

√

√

F 2
2 +

√

√

√

√

F 2
4 +

√

· · ·
√

F 2
2n−1 +

√

F 2
2n + F2n+1+2.

So, by the above argument, we have for all n that
√

√

√

√

F 2
2 +

√

F 2
4 +

√

F 2
8 +

√

· · ·+
√

F2n
2
< 3.
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To see that the limit is in fact 3, let ε ∈ (0, 3) and let s = 1− ε/3. We then have

3− ε = 3s = s

√

√

√

√

√

F 2
2 +

√

√

√

√

F 2
4 +

√

· · ·
√

F 2
2n−1 +

√

F 2
2n + F2n+1+2

=

√

√

√

√

√

s2F 2
2 +

√

√

√

√

s4F 2
4 +

√

· · ·
√

s2n−1F 2
2n−1 +

√

s2n(F 2
2n + F2n+1+2)

<

√

√

√

√

√

F 2
2 +

√

√

√

√

F 2
4 +

√

· · ·
√

F 2
2n−1 +

√

s2n(F 2
2n + F2n+1+2),

where for the last inequality we used the fact that s ∈ (0, 1). We have

F2n+1+2

F 2
2n

=
√
5× α2n+1+2 − β2n+1+2

α2n+1 + β2n+1 − 2
=

√
5× α2 − β2n+2+2

1 + β2n+2 − 2β2n+1
→

√
5α2

as n → ∞. Therefore,

F 2
2n

F 2
2n + F2n+1+2

→ 1

1 +
√
5α2

as n → ∞.

Since s ∈ (0, 1), there is N such that for n > N we have

s2
n

<
F 2
2n

F 2
2n + F2n+1+2

.

Thus, for n > N , we have
√

√

√

√

F 2
2 +

√

F 2
4 +

√

· · ·+
√

F 2
2n >

√

√

√

√

F 2
2 +

√

F 2
4 +

√

· · ·+
√

s2n(F2n+1+2 + F 2
2n)

> 3− ε.

Since ε was arbitrary, the conclusion follows.

Editor’s comment: The proposer also conjectured that for c > 0 we have

lim
n→∞

√

√

√

√

√

cF 2
2 +

√

√

√

√

cF 2
4 +

√

cF 2
8 +

√

· · ·+
√

cF 2
2n =

3 +
√
4c+ 5

2
.

Also solved by Dmitry Fleischman.

Summation Formulas for Reciprocals of Fibonomials with Fibonacci Coefficients

H-768 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 53, No. 1, February 2015)

Let

(

n

k

)

F

denote the Fibonomial coefficient. For n ≥ 1, prove that
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(i)
n
∑

k=0

F2(n−k)

(

2n

k

)−1

F

=
F2n+1(F2n+2 + 1)

F2n+3
− Fn+1Fn+3

F2n+3

(

2n

n

)−1

F

;

(ii)
n
∑

k=0

F2(n−k)

(

2n

k

)−2

=
F 2
2n+1

F2n+2
− Fn+1

Ln+1

(

2n

n

)−2

F

.

Solution by the proposer.

We use the following identity: For a+ b = c+ d, we have

FaFb − FcFd = (−1)r(Fa−rFb−r − Fc−rFd−r) (1)

(see [1]). Let s be an even integer.

(i) For s > n ≥ 0, we show that

n
∑

k=0

Fs−2k
(

s
k

)

F

=
Fs+1(Fs+2 + 1)

Fs+3
− Fn+1(Fs−n+1 + Fn+2)

Fs+3

(

s
n

)

F

. (2)

The proof is by mathematical induction on n.
• For n = 0 we have

LHS −RHS = Fs −
Fs+1Fs+2 − 1

Fs+3
=

FsFs+3 − Fs+1Fs+2 + 1

Fs+3
=

(−1)s(F0F3 − F1F2) + 1

Fs+3

(by (1)), and this last expression is 0.
• We assume that (2) holds for n. For n+ 1, we have

n+1
∑

k=0

Fs−2k
(

s
k

)

F

− Fs+1(Fs+2 + 1)

Fs+3

=
Fs−2(n+1)
(

s
n+1

)

F

+
n
∑

k=0

Fs−2k
(

s
k

)

F

− Fs+1(Fs+2 + 1)

Fs+3

=
Fs−2n−2
(

s
n+1

)

F

− Fn+1(Fs−n+1 + Fn+2)

Fs+3

(

s
n

)

F

=
Fs−2n−2
(

s
n+1

)

F

− Fn+1(Fs−n+1 + Fn+2)

Fs+3 × Fn+1

Fs−n

(

s
n+1

)

F

=
Fs−2n−2Fs+3 − Fs−nFs−n+1 − Fs−nFn+2

Fs+3

(

s
n+1

)

F

=
(−1)s−2n−2(F0F2n+5 − Fn+2Fn+3)− Fs−nFn+2

Fs+3

(

s
n+1

)

f

(by (1))

=
−Fn+2(Fs−n + Fn+3)

Fs+3

(

n
s+1

)

F

.

Thus, (2) holds for n+ 1. Therefore, (2) is proved. Letting s = 2n in (2) for n ≥ 1, we have

n
∑

k=0

F2(n−k)
(

2n
k

)

F

=
F2n+1(F2n+2 + 1)

F2n+3
− Fn+1(Fn+1 + Fn+2)

F2n+3

(

2n
n

)

F

=
F2n+1(F2n+2 + 1)

F2n+3
− Fn+1Fn+3

F2n+3

(

2n
n

)

F

.
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(ii) For s > n ≥ 0, we show that

n
∑

k=0

Fs−2k
(

s
k

)2

F

=
F 2
s+1

Fs+2
− F 2

n+1

Fs+2

(

s
n

)2

F

. (3)

The proof is by mathematical induction on n.
• For n = 0, we have

LHS −RHS = Fs −
F 2
s+1 − 1

Fs+2
=

FsFs+2 − F 2
s+1 + 1

Fs+2
=

(−1)s(F0F2 − F 2
1 ) + 1

Fs+2

(by (1)), and this last expression is 0.
• We assume that (3) holds for n. For n+ 1, we have

n+1
∑

k=0

Fs−2k
(

s
k

)2

F

− F 2
s+1

Fs+2

=
Fs−2(n+1)
(

s
n+1

)2

F

+
n
∑

k=0

Fs−2k
(

s
k

)2

F

− F 2
s+1

Fs+2

=
Fs−2n−2
(

s
n+1

)2

F

− F 2
n+1

Fs+2

(

s
n

)2

F

=
Fs−2n−2
(

s
n+1

)2

F

− F 2
n+1

Fs+2 ×
F 2
n+1

F 2
s−n

(

s
n+1

)2

F

=
Fs−2n−2Fs+2 − F 2

s−n

Fs+2

(

s
n+1

)2

F

=
(−1)s−2n−2(F0F2n+4 − F 2

n+2)

Fs+2

(

s
n+1

)2

F

(by (1))

=
−F 2

n+2

Fs+2

(

s
n+1

)2

F

.

Thus, (3) holds for n+ 1. Therefore, (3) is proved. Letting s = 2n in (3) for n ≥ 1, we have

n
∑

k=0

F2(n−k)
(

2n
k

)2

F

=
F 2
2n+1

F2n+2
− F 2

n+1

F2n+2

(

2n
n

)2

F

=
F 2
2n+1

F2n+2
− Fn+1

Ln+1

(

2n
n

)2

F

,

which is (ii).

References

[1] R. C. Johnson, Fibonacci numbers and matrices, http://www.dur.ac.uk/bob.johnson/fibonacci/.

A Cyclic Sum Inequality

H-769 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.
(Vol. 53, No. 2, May 2015)
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Prove that the inequality

F 6
1

(F 4
1 + F 2

1F
2
2 + F 4

2 )(
√
2F1 + F2)

+
F 6
2

(F 4
2 + F 2

2 F
2
3 + F 4

3 )(
√
2F2 + F3)

+ · · ·

+
F 6
n−1

(F 4
n−1 + F 2

n−1F
2
n + F 4

n)(
√
2Fn−1 + Fn)

+
F 6
n

(F 4
n + F 2

nF
2
1 + F 4

1 )(
√
2Fn + F1)

≥
√
2− 1

3
(Fn+2 − 1)

holds for all positive integers n.

Solution by Ángel Plaza.

It is based on the fact that if x, y are positive then
x6

(x4 + x2y2 + y4)(
√
2x+ y)

≥ (
√
2x− y)

3
.

The above inequality is equivalent to 3x6− (x4+x2y2+y4)(2x2−y2) > 0 which holds because
the left-hand side is (x− y)2(x+ y)2

(

x2 + y2
)

≥ 0.

Corollary. If xk > 0 (k = 1, 2, . . . , n), then
∑

cyclic

x6k
(x4k + x2kx

2
k+1 + x4k+1)(

√
2xk + xk+1)

≥
√
2− 1

3

n
∑

k=1

xk.

Proof. We have

∑

cyclic

x6k
(x4k + x2kx

2
k+1 + x4k+1)(

√
2xk + xk+1)

≥ 1

3

∑

cyclic

(√
2xk − xk+1

)

=

√
2− 1

3

n
∑

k=1

xk.

�

We now apply the previous result to the sequence {xk} = {Fk} and use that
n
∑

k=1

Fk =

Fn+2 − 1 to conclude. See [1] for similar inequalities.

References

[1] M. Bencze and D. M. Bătineţu-Giurgiu, A cathegory of inequalities, Octogon Mathematical Magazine,
17.1 (2009), 149–163.

Also solved by Kenneth B. Davenport, Dmitry Fleischman, Zbigniew Jakubczyk,
Hideyuki Ohtsuka, Nicuşor Zlota, and the proposers.

A Sum of Products of Shifted Lucas Numbers

H-770 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 53, No. 2, May 2015)

For an integer n ≥ 0, find a closed form expression for the sum

S(n) :=

n
∑

k=0

1

(L2k+1 + 1)(L2k + c)(L2k+1 + c) · · · (L2n + c)
,

where c 6= −L2k for 0 ≤ k ≤ n.

Solution by the proposer.
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We find an identity

S(n) =
1

(c+ 1)(L2n+1 + 1)
. (1)

The proof of (1) is by mathematical induction on n.

• For n = 0, we have LHS = RHS =
1

4(c + 1)
.

• We assume that (1) holds for n. For n+ 1, we have

S(n+ 1) =
1

(L2n+2 + 1)(L2n+1 + c)
+

S(n)

L2n+1 + c

=
1

(L2n+2 + 1)(L2n+1 + c)
+

1

(L2n+1 + c)
× 1

(c+ 1)(L2n+1 + 1)

=
(c+ 1)(L2n+1 + 1) + L2n+2 + 1

(c+ 1)(L2n+1 + 1)(L2n+1 + c)
.

Here, the numerator of RHS is

(c+ 1)(L2n+1 + 1) + (L2
2n+1 − 1) (by L2m = L2

m − 2(−1)m)

= (c+ 1)(L2n+1 + 1) + (L2n+1 + 1)(L2n+1 − 1)

= (L2n+1 + 1)(L2n+1 + c).

Therefore,

S(n+ 1) =
1

(c+ 1)(L2n+2 + 1)
.

Thus, identity (1) holds.

Editor’s Notes: (i) Inequality (iv) from Problem H-763 (Vol. 52, No. 4, November 2014)
should read

n
∑

k=1

F 8
k

k3
≥ 8F 4

nF
4
n+1

n3(n+ 1)3
.

(ii) Related to H-688 (Vol. 47, No. 2, May 2009/2010), Apoloniusz Tiszka points out his
paper:

A. Tyszka, A hypothetical way to compute an upper bound on the heights of solutions to a

Diophantine equation with a finite number of solutions, Proceedings of the Federated Confer-
ence on Computer Science and Information Systems, 5 (2015), 709–716.
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