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PROBLEMS PROPOSED IN THIS ISSUE

H-946 Proposed by Ángel Plaza, Gran Canaria, Spain
For any positive integer k, the k-Fibonacci numbers Fk,n and the k-Lucas numbers Lk,n

satisfy the recurrence relation un+2 = kun+1 + un for n > 0, with respective initial values
Fk,0 = 0, Fk,1 = 1, and Lk,0 = 2, Lk,1 = k. Evaluate

lim
k→∞

∞∑
n=1

sinh−1

(
1

(k2 + 4)Fk,nFk,n+1
(Lk,n+1

√
2Lk,2n − Lk,n

√
2Lk,2n+2)

)
.

H-947 Proposed by David Terr, Coronado, CA
Find all positive integer solutions (n, p,m) to the Diophantine equations

3nLp + 4n = 5m and 3n + 4nLp = 5m.

H-948 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Let p > 0 and r = 1 + 2p−2. The sequence {Un} is defined by

U0 = 0, U1 = 1, and Un+2 = pUn+1 + Un for n ≥ 0.

Prove that
∞∑
n=1

tan−1 1

rU2
n

=
π

4
.

H-949 Proposed by Michel Bataille, Rouen, France
Let r, s be integers with r ̸= 0 and let n be a positive integer. Prove that

F(n+1)r+s =
∑
k≥0

(−1)k(r+1)Ln−2k−1
r

((
n− k

k

)
Fr+sLr + (−1)r+1

(
n− 1− k

k

)
Fs

)
.
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H-950 Proposed by Kunle Adegoke, Ile-Ife, Nigeria, and the editor
Let Gn = Gn(a, b) be a gibonacci sequence, that is,

G0 = a, G1 = b; Gn(a, b) = Gn−1(a, b) +Gn−2(a, b), (n ≥ 2),

where a and b are arbitrary numbers (usually integers) not both zero. For q ∈ C, prove that
n∑

j=0

qjFjGj+k =
Gk+1 +Gk−1

5

n∑
j=0

F2j−1q
j +

Gk+2 +Gk

5

n∑
j=0

F2jq
j − Gk+1 +Gk−1

5
f(q),

or equivalently
n∑

j=0

qjFjGj+k =
Gk+1

5

n∑
j=0

L2j+1q
j − Gk−1

5

n∑
j=0

L2j−1q
j − Gk+1 +Gk−1

5
f(q),

where f(q) equals

f(q) =

{
(−1)nqn+1+1

q+1 , if q ̸= −1;

n+ 1, if q = −1.

SOLUTIONS

H-916 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 61, No. 2, May 2023)

Let r and s be positive odd integers. Prove that
∞∏
n=1

F2n−1 + Fr

F2n−1 + Fs
= α

r2−s2

4 .

Solution by Albert Stadler, Herrliberg, Switzerland

The problem statement holds trivially true for r = s, and if it holds true for r > s, then it
holds true for r < s (by taking reciprocals). So, we may assume that r > s. Clearly,(

xa +
1

xa
+ xb +

1

xb

)
=
(
xa + xb

)(
1 + x−a−b

)
.

So
∞∏
n=1

F2n−1 + Fr

F2n−1 + Fs
=

∞∏
n=1

(
α2n−1 + 1

α2n−1 + αr + 1
αr

α2n−1 + 1
α2n−1 + αs + 1

αs

)

=

∞∏
n=1

(
1 + α−2n+1+r

1 + α−2n+1+s

) ∞∏
n=1

(
1 + α−2n+1−r

1 + α−2n+1−s

)

=

r−s
2∏

n=1

1 + α−2n+1+r

1 + α−2n+1−s

=

(
1 + αr−1

) (
1 + αr−3

)
· · ·
(
1 + αs+1

)
(1 + α−s−1) (1 + α−s−3) · · · (1 + α−r+1)

= α((s+1)+(s+3)+···+(r−1)) = α
r2−s2

4 .

Also solved by Michel Bataille, Steve Edwards, Dmitry Fleischman, Won Kyun
Jeong, Ángel Plaza, Yunyong Zhang, and the proposer.
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Editor’s remark: Steve Edwards observed that the corresponding product with Lucas num-

bers equals Kα
r2−s2

4 , where K depends on the values modulo 4 of r and s. If r ≡ 1 and s ≡ 3,
then

K =
1√
5

L 1−r
2

F 1+s
2

·
F 3−r

2

L 3+s
2

· · ·
L− 1+s

2

F− 1−r
2

.

If r ≡ 3 and s ≡ 1, then

K =
√
5
F 1−r

2

L 1+s
2

·
L 3−r

2

F 3+s
2

· · ·
F− 1+s

2

L− 1−r
2

.

If r ≡ s ≡ 1, then

K =
L 1−r

2

L 1+s
2

·
F 3−r

2

F 3+s
2

· · ·
F− 1+s

2

F− 1−r
2

.

Finally, if r ≡ s ≡ 3, then

K =
F 1−r

2

F 1+s
2

·
L 3−r

2

L 3+s
2

· · ·
L− 1+s

2

L− 1−r
2

.

H-917 Proposed by Benjamin Lee Warren, New York, NY
(Vol. 61, No. 2, May 2023)

Let On = 1
3n(2n

2+1) denote the nth Octahedral number. Let Tn = 1
6n(n+1)(n+2) denote

the nth Tetrahedral number. Then, prove the identity

OF2n + TF2n−1−1 = TF2n+1−1.

First Solution by Raphael Schumacher, ETH Zurich, Switzerland

We deduce from Cassini’s identity, Fm−1Fm+1 − F 2
m = (−1)m, that we have the identity

F 2
m + (−1)m = Fm−1Fm+1

= (Fm+1 − Fm)Fm+1

= F 2
m+1 − FmFm+1,

which implies, with m := 2n, that

3F 3
2n + 3F2n − 3F2nF

2
2n+1 + 3F 2

2nF2n+1 = 3F2n(F
2
2n + 1)− 3F2n(F

2
2n+1 − F2nF2n+1) = 0.

We deduce from this identity the equation

F 3
2n+1 − F2n+1 = F 3

2n+1 − F2n+1 + 3F 3
2n + 3F2n − 3F2nF

2
2n+1 + 3F 2

2nF2n+1

= 4F 3
2n + 2F2n + (F2n+1 − F2n)

3 − (F2n+1 − F2n)

= 4F 3
2n + 2F2n + F 3

2n−1 − F2n−1
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and we can compute using the above formula that

OF2n + TF2n−1−1 =
1

3
F2n(2F

2
2n + 1) +

1

6
(F2n−1 − 1)F2n−1(F2n−1 + 1)

=
1

3
(2F 3

2n + F2n) +
1

6
(F 3

2n−1 − F2n−1)

=
1

6
(4F 3

2n + 2F2n + F 3
2n−1 − F2n−1)

=
1

6
(F 3

2n+1 − F2n+1)

=
1

6
(F2n+1 − 1)F2n+1(F2n+1 + 1)

= TF2n+1−1.

Second Solution by Hans J. H. Tuenter, Toronto, Canada

We shall prove something more general. Define the polynomials p(t) = 2t(2t2 + 1) and
q(t) = t(t2−1). Proving the identity is the same as showing that p(F2n)+q(F2n−1) = q(F2n+1).
Let µn be defined by the recurrence µn+2 = xµn+1 + µn, with arbitrary, initial conditions µ0

and µ1. It is tedious, but not difficult, to verify that

x(x2 + 3)p(µn) + 4(q(µn−1)− q(µn+1)) = 2xµn(5 + x2 + 6 [µ2
n − µn−1µn+1]).

The term in square brackets, cn = µ2
n − µn−1µn+1, obeys the trivial recurrence cn = −cn−1,

and results in cn = (−1)n−1c1. This then gives the general identity

x(x2 + 3)p(µn) + 4q(µn−1) = 4q(µn+1) + 2xµn(5 + x2 − 6(−1)n[µ2
1 − µ0µ2]).

Translating this back to the original question, by using an appropriate choice of parameters,
gives the special cases for the Fibonacci and Lucas numbers as

OFn + TFn−1−1 = TFn+1−1 + δn is oddFn and OLn + TLn−1−1 = TLn+1−1 + (3− 5δn is odd)Ln,

where δc is the Kronecker delta, which is 1 when the condition c is true and 0 otherwise. When
n is even, the first identity reduces to the original identity that we were asked to prove.

Also solved by Michel Bataille, Brian Bradie, Charles K. Cook and Michael
R. Bacon (jointly), Kenny Davenport, Steve Edwards, Dmitry Fleischman, Ralph

P. Grimaldi, Won Kyun Jeong, Wei-Kai Lai, Hideyuki Ohtsuka, Ángel Plaza,
Jason L. Smith, Albert Stadler, David Terr, Ell Torek, Yunyong Zhang, and the
proposer.

H-918 Proposed by Andrés Ventas, Santiago de Compostela, Spain
(Vol. 61, No. 2, May 2023)

Prove that
∞∑
n=0

( 1

(L6n/2)

1

L6n+2
+

1

L6n+2

1

L6n+3 + (L6n/2)

+
1

L6n+4

1

L6n+3 + (L6n/2)
+

1

L6n+4

1

(L6n+6/2)

)
=

1√
5
.
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Solution by Hideyuki Ohtsuka, Saitama, Japan

Using FaLb − LaFb = 2(−1)bFa−b (see [1](16b)), we have

F2n+2

L2n+2
− F2n

L2n
=

F2n+2L2n − L2n+2F2n

L2n+2L2n
=

2F2

L2n+2L2n
=

2

L2n+2L2n
.

We have
∞∑
n=0

(
2

L6nL6n+2
+

2

L6n+2(2L6n+3 + L6n)
+

2

L6n+4(2L6n+3 + L6n)
+

2

L6n+4L6n+6

)

=
∞∑
n=0

(
2

L6nL6n+2
+

2(L6n+4 + L6n+2)

L6n+2L6n+4(2L6n+3 + L6n)
+

2

L6n+4L6n+6

)

=
∞∑
n=0

(
2

L6nL6n+2
+

2

L6n+2L6n+4
+

2

L6n+4L6n+6

)
(by 2L6n+3 + L6n = L6n+3 + L6n+2 + L6n+1 + L6n = L6n+4 + L6n+2)

=
∞∑
n=0

(
2

L2(3n)L2(3n+1)
+

2

L2(3n+1)L2(3n+2)
+

2

L2(3n+2)L2(3n+3)

)

=
∞∑
n=0

2

L2nL2(n+1)
= lim

m→∞

m∑
n=0

(
F2(n+1)

L2(n+1)
− F2n

L2n

)
= lim

m→∞

(
F2(m+1)

L2(m+1)
− F0

L0

)
=

1√
5
.

Reference

[1] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Dover, 2008.

Also solved by Michel Bataille, Brian Bradie, Dmitry Fleischman, Yunyong
Zhang, and the proposer.

H-919 Proposed by D.-M. Bătineţu-Giurgiu, Bucharest, Romania, and Neculai
Stanciu, Buzău, Romania
(Vol. 61, No. 2, May 2023)

(a) If a > 0, then compute limn→∞
n
√

(2n− 1)!!Fn( n
√
a− 1).

(b) If a > 0 and (bn)n≥1 is a positive real sequence with limn→∞ bn+1/(nbn) = b > 0, then
compute limn→∞

n
√
bnFn( n

√
a− 1).

(c) Compute limn→∞ n2 n
√
n!Fn sin(1/n

3).

(d) Compute limn→∞ n n
√

(2n− 1)!!Fn sin(1/n
2).

Solution by Michel Bataille, Rouen, France

We first consider (b):

As n → ∞, we have lim
n→∞

Fn+1

Fn
= α; hence, un := bnFn

nn satisfies

lim
n→∞

un+1

un
= lim

n→∞

(
bn+1

nbn
· Fn+1

Fn
·
(
1 +

1

n

)−n

·
(
1 +

1

n

)−1
)

=
bα

e
.
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We deduce that lim
n→∞

n
√
un = bα

e as well and therefore, n
√
bnFn ∼ bαn

e .

Since n
√
a− 1 = e(ln a)/n − 1 ∼ ln a

n , we readily obtain

lim
n→∞

n
√

bnFn(
n
√
a− 1) =

bα ln a

e
.

(a) The sequence (bn) defined by bn = (2n−1)!! satisfies lim
n→∞

bn+1/(nbn) = 2; hence, (b) gives

lim
n→∞

n
√
(2n− 1)!!Fn(

n
√
a− 1) =

2α ln a

e
.

(c) From (b) we deduce n
√
n!Fn ∼ αn

e ; since n2 sin(1/n3) ∼ n2 · 1
n3 = 1

n , we get

lim
n→∞

n2 n
√
n!Fn sin(1/n

3) =
α

e
.

(d) Similarly, from n sin(1/n2) ∼ 1
n and n

√
(2n− 1)!!Fn ∼ 2αn

e , we deduce that

lim
n→∞

n n
√
(2n− 1)!!Fn sin(1/n

2) =
2α

e
.

Also solved by Brian Bradie, Dmitry Fleischman, Ángel Plaza, and the proposers.

H-920 Proposed by the editor
(Vol. 61, No. 2, May 2023)

For m ≥ 0, prove that
∞∑
k=1

(ζ(4k)− 1)F4k+m =
Fm

2
+

Lm+2

5
+

π

4
√
5
Lm+1 tan

√
5π

2
− π

8
√
5
Lm+1A− π

8
Fm+1B

and
∞∑
k=1

(ζ(4k)− 1)L4k+m =
Lm

2
+ Fm+2 +

√
5π

4
Fm+1 tan

√
5π

2
− π

8
Lm+1B −

√
5π

8
Fm+1A,

where
A = coth(πα) + coth(π/α) and B = coth(πα)− coth(π/α),

α = (1 +
√
5)/2, and ζ(s) =

∑∞
k=1 1/k

s, ℜ(s) > 1 is the Riemann zeta function.

Solution by Brian Bradie, Newport News, VA

Subtracting
∞∑
k=1

x2k =
x2

1− x2

from
∞∑
k=1

ζ(2k)x2k =
1

2
(1− πx cotπx)

gives
∞∑
k=1

(ζ(2k)− 1)x2k =
1

2
− π

2
x cotπx− x2

1− x2
.

Now, replacing x by ix yields
∞∑
k=1

(ζ(2k)− 1)(−1)kx2k =
1

2
− π

2
x cothπx+

x2

1 + x2
,
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and adding these last two expressions and then dividing by 2 produces
∞∑
k=1

(ζ(4k)− 1)x4k =
1

2
− π

4
x cotπx− π

4
x cothπx− x4

1− x4
.

It then follows that
∞∑
k=1

(ζ(4k)− 1)α4k+m =
αm

2
− αm+4

1− α4
− π

4
αm+1 cotπα− π

4
αm+1 cothπα

and
∞∑
k=1

(ζ(4k)− 1)β4k+m =
βm

2
− βm+4

1− β4
− π

4
βm+1 cotπβ − π

4
βm+1 cothπβ.

From here, note

cotπα = cot

(
π

2
+

π
√
5

2

)
= − tan

π
√
5

2
,

cotπβ = cot

(
π

2
− π

√
5

2

)
= tan

π
√
5

2
,

α4

1− α4
= − α2

√
5
,

β4

1− β4
=

β2

√
5
,

αm+1 =
1

2
(
√
5Fm+1 + Lm+1), and

βm+1 =
1

2
(Lm+1 −

√
5Fm+1).

Thus,
∞∑
k=1

(ζ(4k)− 1)α4k+m =
αm

2
+

αm+2

√
5

+
π

4
αm+1 tan

π
√
5

2
− π

8
(
√
5Fm+1 + Lm+1) cothπα

and
∞∑
k=1

(ζ(4k)− 1)β4k+m =
βm

2
− βm+2

√
5

− π

4
βm+1 tan

π
√
5

2
+

π

8
(Lm+1 −

√
5Fm+1) coth

π

α
.

Finally,
∞∑
k=1

(ζ(4k)− 1)F4k+m =
1√
5

( ∞∑
k=1

(ζ(4k)− 1)α4k+m −
∞∑
k=1

(ζ(4k)− 1)β4k+m

)

=
Fm

2
+

Lm+2

5
+

π

4
√
5
Lm+1 tan

π
√
5

2
− π

8
√
5
Lm+1A− π

8
Fm+1B

and
∞∑
k=1

(ζ(4k)− 1)L4k+m =

∞∑
k=1

(ζ(4k)− 1)α4k+m +

∞∑
k=1

(ζ(4k)− 1)β4k+m

=
Lm

2
+ Fm+2 +

π
√
5

4
tan

π
√
5

2
− π

8
Lm+1B − π

√
5

8
Fm+1A,

where
A = coth(πα) + coth(π/α) and B = coth(πα)− coth(π/α).
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Also solved by Michel Bataille, Dmitry Fleischman, David Terr, Yunyong Zhang,
and the proposer.
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