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PROBLEMS PROPOSED IN THIS ISSUE

H-661 Proposed by J. López González, Madrid, Spain and F. Luca, Mexico
Let φ(n) and σ(n) be the Euler function of n and the sum of divisors function of n,

respectively.
(i) If n is odd perfect show that 0.4601 < φ(n)/n < 0.5.
(ii) Show that n is odd perfect if and only if nσ(2n) = σ(n)(n + σ(n)).

H-662 Proposed by Rigoberto Flórez, Sumter, SC
Let Tn = n(n + 1)/2 be the nth triangular number.
(i) If n ≥ 1, show that

n! = 2bn/2c
bn/2c−1∏

i=1

(Tb(n+1)/2c − Ti).

(ii) Suppose that T is equal to
∏k−1

i=0 (Tk − Ti) or
∏k−1

i=0 (Tk+1 − Ti). Let p be the first
prime number greater than T . Is p− T always equal to one or to a prime number?

H-663 Proposed by Charles K. Cook, Sumter, SC
If n ≥ 3, evaluate

∏Fn−1
j=1 sin(jπ/Fn).

H-664 Proposed by A. Cusumano, Great Neck, NY
If a is a positive integer, prove that

lim
n→∞

(F 1/a
n + F

1/a
n+a − F

1/a
n+2a) = 0 and lim

n→∞

F
1/a
n + F

1/a
n+a

F
1/a
n+2a

= 1.
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SOLUTIONS
A Fibonacci System

H-644 Proposed by José Luis Dı́az-Barrero, Barcelona, Spain
(Vol. 44, No. 3, August 2006)

Let n be a positive integer. Solve the following system of equations


1 + 1

F1
1 . . . 1

1 1 + 1
F2

. . . 1
...

... . . .
...

1 1 . . . 1 + 1
Fn




x1

x2
...

xn

 =


F1

F2
...

Fn

 .

Solution by H.-J. Seiffert, Berlin, Germany

The system of equations may be rewritten as

xk

Fk
+

n∑
j=1

xj = Fk, k = 1, 2, . . . , n.

Letting Sn =
∑n

j=1 xj and multiplying the kth equation by Fk yields

xk + FkSn = F 2
k , k = 1, 2, . . . , n. (1)

Summing over k = 1, 2, . . . , n and using the known summation formulas

n∑
k=1

Fk = Fn+2 − 1 and
n∑

k=1

F 2
k = FnFn+1,

it follows easily that Sn = FnFn+1/Fn+2. Now, (1) gives the solution

xk = F 2
k − FkFnFn+1

Fn+2
, k = 1, 2, . . . , n.

Also solved by Paul S. Bruckman, Rigoberto Flórez and Maitland Rose (jointly),
Rebecca A. Hillman and Charles K. Cook (jointly), Harris Kwong and the pro-
poser.
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Mersenne and Fermat Factors of Lucas Numbers

H-645 Proposed by John H. Jaroma, Loyola College in Maryland, Baltimore, MD
(Vol. 44, No. 3, August 2006)

(1) Show that every Mersenne prime is a factor of infinitely many Ln.
(2) Show that no Fermat prime is a factor of any Ln.

Solution by the proposer

(1) Let 2p − 1 be a Mersenne prime. Now, {Fn} and {Ln} are produced by the Lu-
cas sequence Xn+2 = PXn+1 − QXn, n ∈ {0, 1, . . . }, where P = 1 and Q = −1. Let
D = P 2 − 4Q = 5 be the discriminant of the characteristic equation. Since p ≥ 2, we have( Q

2p − 1

)
= −1. We recall that the rank of apparition of a prime p is the index of the first

term in the underlying sequence that contains p as a divisor and that p divides infinitely many
Lucas numbers if and only if its rank of apparition is even.

Case I. Suppose that p ≡ 3 (mod 4). Thus,

( 5
2p − 1

)
=

(2p − 1
5

)
=

(8− 1
5

)
=

(2
5

)
= −1,

where we used the fact that 24 ≡ 1 (mod 5). It now follows that 2p − 1 | F2p , so the rank of
apparition of 2p−1 is a divisor of 2p. In particular, it is even, therefore 2p−1 divides infinitely
many Lucas numbers.

Case II. Suppose that p ≡ 1 (mod 4). Then

( 5
2p − 1

)
=

(2p − 1
5

)
=

(2− 1
5

)
= 1,

therefore, 2p − 1 | F2(2p−1−1). However, as
( Q

2p − 1

)
= −1, we get that 2p − 1 does not divide

F2p−1−1. Hence, the rank of apparition of 2p − 1 in {Fn} is even, therefore 2p − 1 divides
infinitely many Lucas numbers.

(2) We may assume that the Fermat number in question exceeds 5 since it is easy to check
that no Lucas number is a multiple of 5. It is well-known that 5 is not a quadratic residue
modulo the Fermat number 22n

+ 1 for all n ≥ 2. Indeed, this is used in Pepin’s test for the
primality of the Fermat number. Hence, if 22n

+ 1 is prime, then it divides F22n+2. Since
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22n + 1

)
= 1, it follows that 22n

+ 1 | F22n−1+1. Thus, the ranks of apparition of Fermat

primes exceeding 5 in {Fn} are odd, therefore, such numbers do not divide Lucas numbers.

Also solved by Paul S. Bruckman.

Variants of Wiefrich Numbers

H-646 Proposed by John H. Jaroma, Loyola College in Maryland, Baltimore, MD
(Vol. 44, No. 3, August 2006)

A Wiefrich prime is any prime p that satisfies 2p−1 ≡ 1 (mod p2). Presently, 1093 and
3511 are the only known such primes. Similarly defined is a Wall-Sun-Sun prime, which is any
prime p such that Fp−(5/p) ≡ 0 (mod p2), where (5/p) is the Legendre symbol. There are no
known Wall-Sun-Sun primes. More generally, in 1993 P. Montgomery added 23 new solutions
to ap−1 ≡ 1 (mod p2). This brought to 219 the number of observed solutions to 2 ≤ a ≤ 99
and 3 ≤ p < 232.

Let p be a prime and n ≥ 1. Prove that there exist infinitely many integers a > 1 such
that ap−1 ≡ 1 (mod pn).

Solution by Paul Young, Charleston, SC

For any prime p the integer a = k · pn + 1 is such an integer for any k > 0, since a ≡ 1
(mod pn) implies ap−1 ≡ 1 (mod pn). This shows that there are in fact infinitely many primes
a satisfying the given condition (by Dirichlet’s Theorem). For other solutions, observe that
since the multiplicative group (Z/pnZ)× of units of Z/pnZ has order φ(pn) = pn−1(p − 1),
we get that (bpn−1

)p−1 ≡ 1 (mod pn) for any integer b which is relatively prime to p. Thus,
a = bpn−1

is such an integer for any integer b > 1 which is relatively prime to p, as is any
positive integer of the form a = bpn−1

+ k · pn, where (b, p) = 1 and k ∈ Z. There are therefore
infinitely many such primes a in every nontrivial residue class modulo p.

Also solved by Paul S. Bruckman and the proposer.

Summing Members of a Binary Recurrence

H-647 Proposed by N. Gauthier, Kingston, ON
(Vol. 44, No. 4, November 2006)

For a positive integer n and a non-zero number k, consider the following recurrence for
generalized Fibonacci numbers

fr+2 = kfr+1 + fr; r ≥ 0; f0 = 0, f1 = 1.

a) Prove the following two identities

n−1∑
r=0

rfr =
n

k
(fn + fn−1) +

1
k2

(2− (k + 2)fn − 2fn−1);
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n−1∑
r=0

r2fr =
n2

k
(fn + fn−1) +

1
k2

(2− (2n + 1)((k + 2)fn + 2fn−1))

− 2
k3

((k + 4)(1− fn−1)− (k2 + 3k + 4)fn).

b) Find a similar formula for
∑n−1

r=0 r3fr, in terms of fn, fn−1 and a constant term.

Editor’s solution based on the proposer’s solution

a) Let α and β be the solutions of the characteristic equation satisfying

α + β = k, αβ = −1.

It suffices to find, for each nonnegative integer m, the sums
∑n−1

r=0 rmαr and
∑n−1

r=0 rmβr.
Indeed, by the Binet formula, one may write that, for r an integer

fr =
αr − βr

α− β
; f−r = (−1)r+1fr. (1)

The desired sums are thus expressible as follows

n∑
r=0

rmfr =
∑n−1

r=0 rmαr −
∑n−1

r=0 rmβr

α− β
. (2)

Now note that for z 6= 1, we have that

n−1∑
r=0

zr =
zn − 1
z − 1

, (3)

therefore,

n∑
r=0

rzr−1 =
d

dz

(zn − 1
z − 1

)
=

(n− 1)z − n)zn−1 + 1
(z − 1)2

, (4)

so

n−1∑
r=0

rzr =
((n− 1)z − n)zn + z

(z − 1)2
. (5)
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Note now that α 6= 1 and β 6= 1. Indeed, if one of α or β is 1, then the other is also an integer.
Since αβ = −1, we get that {α, β} = {−1, 1}, therefore k = α + β = 0, which is not allowed.
Using (5) with both z = α, z = β, subtracting the resulting expressions and using formula (2)
we get

n−1∑
r=0

rfr = P1(n)αn + P2(n)βn + P3,

where P1(n) = ((n−1)α−n)(α−1)−2(α−β)−1 and P2(n) = −((n−1)β−n)(β−1)−2(α−β)−1

are linear polynomials in n, while P3 = (α(1 − α)2 − β(1 − β)2)(α − β)−1 is constant. Thus,
the numbers un =

∑n−1
r=0 rfr form a linearly recurrent sequence of order 5 whose characteristic

polynomial is (X − α)2(X − β)2(X − 1) = (X2 − kX − 1)2(X − 1).
Let vn = n/k(fn + fn−1) + 1/k2(2− (k + 2)fn − 2fn−1) for n = 1, 2, . . . . Using the Binet

formula for fn and fn−1, it is easy to see that

vn = Q1(n)αn + Q2(n)βn + Q3,

where Q1(n) and Q2(n) are linear polynomials in n and Q3 is a constant. Hence, (vn)n≥0 also
satisfies the 5th order linear recurrence whose characteristic polynomial is (X2−kX +1)2(X−
1).

In conclusion, in order to prove that the first identity claimed at a) holds, it suffices to
check the identity for the first 5 values of n. One now checks that

u1 = v1 = 0, u2 = v2 = 1, u3 = v3 = 1+2k, u4 = v4 = 3k2+5k+1, u5 = v5 = 4k3+3k2+13k+1.

For the second identity, one can proceed in the same way. Using (4), its derivative, and
(3), one shows easily that wn =

∑n−1
r=0 r2fr can be represented as R1(n)αn + R2(n)βn + R3,

where R1(n) and R2(n) are quadratic polynomials in n and R3 is a constant. Hence, (wn)n≥0

satisfies the 7th order linear recurrence of characteristic polynomial (X−α)3(X−β)3(X−1) =
(X2 − kX − 1)3(X − 1). Now letting (xn)n≥0 be the sequence whose general term appears in
the right hand side of the second identity, and using the Binet formula (1) for fn and fn−1,
one sees easily that xn is also of the form S1(n)αn +S2(n)βn +S3, where S1(n) and S2(n) are
quadratic polynomials in n and S3 is a constant. Thus, (xn)n≥0 is also a 7th order recurrent
sequence satisfying the recurrence with the same characteristic equation (X2−kX−1)3(X−1)
as (wn)n≥0. Thus, in order to prove the second identity, it suffices to check that it indeed holds
for n = 1, . . . , 7, which we leave to the reader.

For b), the proposer sent in the identity

n−1∑
r=0

r3fr =
n3

k
(fn + fn−1) +

1
k2

[2− (3n2 + 3n + 1)((k + 2)fn + 2fn−1)]
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− 6
k3

[k + 4− (n + 1)((k2 + 3k + 4)fn + (k + 4)fn−1]

+
6
k4

[k2 + 4k + 8− (k3 + 4k2 + 8k + 8)fn − (k2 + 4k + 8)fn−1],

which we leave to the reader to verify by the method presented above (both sides are recurrent
of order 9 satisfying the same recurrence of characteristic equation (X2 − kX − 1)4(X − 1), so
it suffices to check that it holds for the first 9 values of n).

Also solved by Kenny Davenport and the proposer.

PLEASE SEND IN PROPOSALS!
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