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PROBLEMS PROPOSED IN THIS ISSUE

H-725 Proposed by Paul S. Bruckman, Nanaimo, BC
Prove the following identities valid for n = 0, 1, 2, . . .

(a)

bn/4c
∑

k=0

(

n− 3k

k

)

(−3)3k4n−4k =
1

6

(

(3n + 5)3n − (−1)n3n/2
sin ((n− 1)θ)

sin θ

)

,

where sin θ =
√

2/3;

(b)

bn/4c
∑

k=0

(

n− k

3k

)

(−3)3k4n−4k =
1

18

(

9n+ 7 + 33n/2(11 cos(nρ) + sin(nρ)/
√
2)
)

,

where sin ρ =
√

2/27;

(c)

bn/4c
∑

k=0

(

n− 2k

2k

)(

(pq(p2 − q2))

(p2 + q2)2

)2k

=
(p(p + q))n+1 − (q(q − p))n+1

2(p2 + 2pq − q2)(p2 + q2)n

+
(p(p− q))n+1 − (q(q + p))n+1

2(p2 − 2pq − q2)(p2 + q2)n
, where p > q > 0 are integers.

H-726 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Prove that

∞
∑

k=1

(

1

F2k
− 1

F4k
+

1

F8k
+

1

F16k
+ · · ·+ 1

F2nk
+ · · ·

)

=

∞
∑

k=1

1

F2k−1F2k
.
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H-727 Proposed by Bassem Ghalayini, Louaize, Lebanon

Let n be a natural number. Prove that

(2n+ 1)

(

2n

n

)

=
∑

0≤i,j,k≤n
i+j+k=n

(

2i

i

)(

2j

j

)(

2k

k

)

.

H-728 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania

Let a, b, c,m be positive real numbers and n be a positive integer. Prove that:

(a)
Fn

√

F 2
n + aFn+1Fn+2

+
Fn+1

√

F 2
n+1 + bFn+2Fn

+
Fn+2

√

F 2
n+2 + cFnFn+1

≥ 1,

provided that a+ b+ c ≤ 24;

(b)
a−3m−3

(Fnb+ Fn+1c)m+1
+

b−3m−3

(Fnc+ Fn+1a)m+1
+

c−3m−3

(Fna+ Fn+1b)m+1
≥ 3

Fm+1
n+2

,

provided that abc = 1.

H-729 Proposed by Paul S. Bruckman, Nanaimo, BC

Define a sequence {an}n≥0 of rational numbers by the recurrence
n
∑

k=0

ak
n+ 1− k

= δn,0, where

δi,j is the Kronecker symbol which equals 1 if i = j and 0, otherwise.

(a) Prove that −
∞
∑

k=1

an
n

= γ, the Euler constant;

(b) Prove that an = − 1

n+ 1
+

n−1
∑

k=0

un−kak for n ≥ 1, where um =
2(Hm − 1)

(m+ 2)

and Hm =
m
∑

k=1

1

k
for all m ≥ 1.

SOLUTIONS

On the Parity of the Mertens Function

H-700 Proposed by Mohamed El Bachraoui, United Arab Emirates
(Vol. 48, No. 2, May 2011)

Let µ be the Möbius mu function and let M(n) be the Mertens function given by M(n) =
∑

a≤n µ(a). If n > 2, it is clear that

M(n) ≡ #{a ∈ [2, n − 1] : a squarefree, a - n} (mod 2).

Prove that for all positive integers n > 2 we have

a) M(2n) ≡ 1 + #{a ∈ [2, 2n − 3] : a squarefree, a - 2n, a - 2n− 1, a - 2n− 2} (mod 2);
b) M(2n + 1) ≡ #{a ∈ [2, 2n − 2] : a squarefree, a - 2n+ 1, a - 2n, a - 2n− 1} (mod 2).
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Solution by the proposer.

Let n > 2. By Theorem 10 in [1], we have

M(2n) = −3 +

2n
∑

a=1

µ(a)2b2n/ac−b(2n−3)/ac ;

M(2n + 1) = −4 +

2n+1
∑

a=1

µ(a)2b(2n+1)/ac−b(2n−2)/ac .

Then

M(2n) ≡ −3 +
∑

1≤a≤2n
a is squarefree

µ(a)2b2n/ac−b(2n−3)/ac ≡ 1 +
∑

1≤a≤2n
a is squarefree

b2n/ac=b(2n−3)/ac

1

≡ 1 + #{a ∈ [2, 2n − 3]; a square-free, a - 2n, a - (2n− 1), and a - (2n − 2)} (mod 2).

The other identity follows similarly.

References

[1] M. El Bachraoui, Combinatorial identities involving Mertens function through relatively prime subsets, arXiv:
0912.1518.

Also solved by Paul S. Bruckman.

A Catalan Type Identity for k Fibonacci Numbers

H-701 Proposed by Sergio Falcón and Ángel Plaza, Gran Canaria, Spain
(Vol. 48, No. 2, May 2011)

For k ≥ 1, let Fk,n be the sequence given by Fk,0 = 0, Fk,1 = 1, Fk,n+2 = kFk,n+1 + Fk,n

for n ≥ 0. Show that if 2r + h 6= 0, then

Fk,n+rFk,n+r+h + (−1)h+1Fk,n−rFk,n−r−h

Fk,2r+h
= Fk,2n.

Solution by Jallisa Clifford, Kristopher Liggins and Dickson Toroitich, Benedict
College, SC.

For simplicity of notation, we use the notation Fk,n = Fn and hence, we will prove the
following

Fn+rFn+r+h + (−1)h+1Fn−rFn−r−h = F2r+hF2n.

If h is even, let h = 2a. Recall Catalan’s identity for the k-Fibonacci numbers [1] is Fn−rFn+r−
F 2
n = (−1)n+1−rF 2

r . By replacing n = n + r + a and r = a, we obtain Fn+rFn+r+2a =
F 2
n+r+a + (−1)n+r+1F 2

a and by replacing n = n− r − a and r = a, we obtain Fn−rFn−r−2a =

F 2
n−r−a + (−1)n−r−2a+1F 2

a . Then

Fn+rFn+r+2a + (−1)2a+1Fn−rFn−r−2a

= [F 2
n+r+a + (−1)n+r+1F 2

a ]− [F 2
n−r−a + (−1)n−r−2a+1F 2

a ]

= (F 2
n+r+a − F 2

n−r−a) + (−1)n−r−2a+1F 2
a ((−1)2r+2a − 1)

= F 2
n+r+a − F 2

n−r−a = F2r+2aF2n.
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This takes care of the case h even. If h is odd, let h = 2a + 1. We prove first the following
lemma.

Lemma 1.

Fn+rFn+r+1 + Fn−rFn−r−1 = F2r+1F2n.

Proof of the Lemma:

LHS =
rn+r
1 − rn+r

2

r1 − r2
· r

n+r+1
1 − rn+r+1

2

r1 − r2
+

rn−r
1 − rn−r

2

r1 − r2
· r

n−r−1
1 − rn−r−1

2

r1 − r2

=
r2n+2r+1
1 − rn+r

1 rn+r+1
2 − rn+r+1

1 rn+r
2 + r2n+2r+1

2

(r1 − r2)2

+
r2n−2r−1
1 − rn−r

1 rn−r−1
2 − rn−r−1

1 rn−r
2 + r2n−2r−1

2

(r1 − r2)2

=
r2n+2r+1
1 + r2n+2r+1

2 + r2n−2r−1
1 + r2n−2r−1

2 − (r1 + r2)(r
n+r
1 rn+r

2 + rn−r−1
1 rn−r−1

2 )

(r1 − r2)2

=
r2n+2r+1
1 + r2n+2r+1

2 + r2n−2r−1
1 + r2n−2r−1

2 − (r1 + r2)(r1r2)
n−r−1((r1r2)

2r+1 + 1)

(r1 − r2)2

=
r2n+2r+1
1 + r2n+2r+1

2 + r2n−2r−1
1 + r2n−2r−1

2

(r1 − r2)2

=
r2n+2r+1
1 + r2n+2r+1

2 − r2n−2r−1
1 (r1r2)

2r+1 − r2n−2r−1
2 (r1r2)

2r+1

(r1 − r2)2

=
r2n+2r+1
1 + r2n+2r+1

2 − r2n1 r2r+1
2 − r2r+1

1 r2n2
(r1 − r2)2

=
(r2n1 − r2n2 )(r2r+1

1 − r2r+1
2 )

(r1 − r2)(r1 − r2)

= F2nF2r+1 = RHS,

since r1r2 = −1.
Next we will proceed by induction on h. If h = 1, the result follows from the previous

lemma. We assume the identity is true for h = 2a− 1; i.e.,

Fn+rFn+r+(2a−1) + Fn−rFn−r−(2a−1) = F2nF2r+2a−1.

Also note that the identity is true whenever h is even; i.e.,

Fn+rFn+r+2a − Fn−rFn−r−2a = F2nF2r+2a.

We also use the recursive definition for the k-Fibonacci numbers,

Fn+r+2a+1 = kFn+r+2a + Fn+r+2a−1 and Fn−r−2a+1 = kFn−r−2a + Fn−r−2a−1.

Thus,

Fn+rFn+r+2a+1 + (−1)2a+1+1Fn−rFn−r−2a−1

= Fn+r(kFn+r+2a + Fn+r+2a−1) + Fn−r(Fn−r−2a+1 − kFn−r−2a)

= k(Fn+rFn+r+2a − Fn−rFn−r−2a) + (Fn+rFn+r+2a−1 + Fn−rFn−r−2a+1)

= kF2nF2r+2a + F2nF2r+2a−1 = F2n(kF2r+2a + F2r+2a−1) = F2nF2r+2a+1.
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References

[1] S. Falcón & Á. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solitons and Fractals,
33 (2007), 38–49.

Also solved by Paul S. Bruckman, Zbigniew Jakubczyk and the proposers.

Sums of Reciprocals of Squares of Lucas Numbers

H-702 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 48, No. 2, May 2011)

For an integer m 6= 0 determine
∞
∑

k=1

4k

L2
m2k

.

Solution by Ángel Plaza, Las Palmas, Spain and Derek Jennings, Southampton,
England.

The proof for the case m = 1 is in [1]. We follow the same argument given there for the
general case. We start from the identities

qm

(1 + qm)2
+

4q2m

(1− q2m)2
=

qm

(1− qm)2

qm

(1 + qm)2
+

4q2m

(1− q2m)2
+

16q4m

(1− q4m)2
=

qm

(1− qm)2

and continuing the expansion process we arrive at

qm

(1 + qm)2
+

∞
∑

n=1

22nqm2n

(1 + qm2n)2
=

qm

(1− qm)2
.

∞
∑

n=1

22nqm2n

(1 + qm2n)2
= 4 · q2m

(1− q2m)2
. (1)

Now setting q = (1 −
√
5)/2, and using the Binet formulas Ln = αn + βn, and Fn = (αn −

βn)/(α − β), we obtain for n = 1 and n > 1, respectively
(

2qm

1 + q2m

)2

=

(

2

q−m + qm

)2

=
4

(q−m + qm)2
,

qm2n

(1 + qm2n)2
=

(

qm2n−1

1 + qm2n

)2

=

(

1

q−m2n−1 + qm2n−1

)2

=
1

L2
m2n−1

.

Equation (1) reads as

4

(q−m + qm)2
+ 4

∞
∑

n=1

(

2n

Lm2n

)2

= 4 · q2m

(1− q2m)2
, (2)

from where we derive
∞
∑

n=1

(

2n

Lm2n

)2

=
q2m

(1− q2m)2
− 1

(q−m + qm)2
=

4

5F 2
2m

.
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References

[1] D. Jennings, Some reciprocal summation identities with applications to the Fibonacci and Lucas numbers,
Applications of Fibonacci Numbers, Vol. 7, Edition 1, G. E. Bergum, Alwyn F. Horadam, A. N. Philippou
(eds.), Kluwer Acad. Publ., 1998.

Also solved by Paul S. Bruckman and the proposer.

Binomial Coefficients and Fibonacci and Lucas Numbers

H-703 Proposed by Napoleon Gauthier, Kingston, ON
(Vol. 48, No. 2, May 2011)

Let n be a positive integer and prove the following identities:

a)
∑

k≥0

k

(

n− k − 1

k

)

=
1

10
[(5n − 4)Fn − Ln];

b)
∑

k≥0

k2
(

n− k − 1

k

)

=
1

50
[(15n2 − 20n + 4)Fn − (5n2 − 6n)Ln].

Solution by Ángel Plaza and Sergio Falcón, Las Palmas, Spain.

a) For the first values of n in both hands of the equality we obtain the sequence

{0, 0, 1, 2, 5, 10, 20, 38, 71, 130, 235, 420, . . .}

listed in [1] as sequence A001629, and called as Fibonacci numbers convolved with themselves.
In order to prove the equality, we show that both sides of the equality have the same generating
function.

For the right-hand side, we use the “Snake Oil Method” [2] applied to

an =
∑

k≥0

k

(

n− k − 1

k

)

.

Let A(x) be its generating function. That is,

A(x) =
∑

n≥0

xn
∑

k≥0

k

(

n− k − 1

k

)

=
∑

k≥0

kxk+1
∑

n≥2k+1

(

n− k − 1

k

)

xn−k−1.

We use the following identity (see Eq. (4.3.1), page 120 in [2]):

∑

r≥0

(

r

k

)

xr =
xk

(1− x)k+1
(k ≥ 0).

Therefore,

A(x) =
∑

k≥0

kxk+1 xk

(1− x)k+1
=

x

1− x

∑

k≥0

k

(

x2

1− x

)k

=
x3

(−1 + x+ x2)2
.

In the last step, we used
∑

k≥0

kyk =
y

(1− y)2
.
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Now, we obtain the generating function of the sequence on the right-hand side of the equality.

Since F (x) =
x

1− x− x2
and L(x) =

2− x

1− x− x2
are the generating functions for Fibonacci

and Lucas numbers, respectively, the generating function for {nFn}n≥0 is

xF ′(x) =
x+ x3

(−1 + x+ x2)2

and the generating function for {nLn}n≥0 is

xL′(x) =
x+ 4x2 − x3

(−1 + x+ x2)2
.

Thus, the generating function for the sequence with general term bn =
1

10
[(5n − 4)Fn − nLn]

is

B(x) =
1

10

[

5
x+ x3

(−1 + x+ x2)2
− 4

x

1− x− x2
− x+ 4x2 − x3

(−1 + x+ x2)2

]

=
x3

(−1 + x+ x2)2
.

Since A(x) = B(x), the identity is proved. �

b) This identity is proved in an analogous way to the proof of a).

Let A(x) be the generating function of the sequence






∑

k≥0

k2
(

n− k − 1

k

)







n≥0

.

Then,

A(x) =
∑

n≥0

xn
∑

k≥0

k2
(

n− k − 1

k

)

=
∑

k≥0

k2xk+1
∑

n≥2k+1

(

n− k − 1

k

)

xn−k−1

=
∑

k≥0

k2xk+1 xk

(1− x)k+1
=

x

1− x

∑

k≥0

k2
(

x2

1− x

)k

=
x3(−1 + x− x2)

(−1 + x+ x2)3
.

In the last step, we used
∑

k≥0

k2yk =
y + y2

(1− y)3
.

For the expression on the right-hand side of b), we obtain the same generating function by
using that the generating function of

{

n2Fn

}

n≥0
is

x(xF ′(x))′ = −x(1 + x+ 6x2 − x3 + x4)

(−1 + x+ x2)3

and the generating function of
{

n2Ln

}

n≥0
is

x(xL′(x))′ =
x(−1− 9x− 9x3 + x4)

(−1 + x+ x2)3
.

�
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Also solved by Eduardo H. M. Brietzke, Paul S. Bruckman, Kenneth Davenport
and the proposer.

Errata: The correct answer to H-691 in volume 49 no. 1, February 2012 should be

σ =
G

2
+

π2

48
− 7(ln 2)2

8
− π ln 2

8
;

i.e., the coefficient of π2 should be 1/48 instead of 13/192. This is due to a missing factor of
1/4 in one integral.

The second problem labeled H–723 in volume 49 no. 3, August 2012 should read H–724.
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