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PROBLEMS PROPOSED IN THIS ISSUE

H-797 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Let
(

n
k

)

F
denote the Fibonomial coefficient. For positive integers a, b, c and d = a+b+c−1,

prove that
a
∑

k=0

F2k

(

2a

a+ k

)

F

(

2b

b+ k

)

F

(

2c

c+ k

)

F

(

2d

d+ k

)−1

F

=
FaFbFcFd+1

Fa+bFb+cFc+a

(

2a

a

)

F

(

2b

b

)

F

(

2c

c

)

F

(

2d

d

)−1

F

.

H-798 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.

If t ∈ (0, π/2) and m ≥ 0 prove that

sinm+2 t

(Fn sin t+ Fn+1 cos t)m
+

cosm+2 t

(Fn cos t+ Fn+1 sin t)m
≥

1

Fm
n+2

and
1

(Ln + Ln+1 tan t)m
+

tanm+2 t

(Ln tan t+ Ln+1)m
≥

1

Lm
n+2 cos

2 t

hold for all n ≥ 1.

H-799 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.

Prove that
Fn

Fn+1(F 2
n+1 + 4FnFn+1 + 3F 2

n)
+

Fn+1

Fn(3F 2
n+1 + 4FnFn+1 + F 2

n)
≥

4FnFn+1

F 4
n+2

and that the same inequality with all F ’s replaced by L’s holds for all n ≥ 1.
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H-800 Proposed by Mehtaab Sawhney, Commack, NY.

Let

Sk =
∑

n1+2n2+···+knk=k
n1,n2,...,nk∈Z≥0

(−1)n1+n2+···+nk

(

n1 + n2 + · · ·+ nk

n1, n2, . . . , nk

) k
∏

j=1

(j + 1)nj .

Compute S1, S2 and show that Sk = 0 for all k ≥ 3.

SOLUTIONS

Hölder’s Inequality in Disguise

H-763 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.
(Vol. 52, No. 4, November 2014)

Prove that:

(i)

n
∑

k=1

F 4
k

k2
≥

6F 2
nF

2
n+1

n(n+ 2)(2n + 1)
;

(ii)

n
∑

k=1

F 6
k

k2
≥

4F 3
nF

3
n+1

n2(n+ 1)2
;

(iii)

n
∑

k=1

F 6
k

k4
≥

36F 3
nF

3
n+1

n2(n+ 1)2(2n+ 1)2
;

(iv)

n
∑

k=1

F 8
k

k3
≥

4F 4
nF

4
n+1

n2(n+ 1)2
;

(v)

n
∑

k=1

F 4
k

k3
≥

4F 2
nF

2
n+1

n2(n+ 1)2
;

(vi)

n
∑

k=1

F 6
k

k6
≥

16F 3
nF

3
n+1

n4(n+ 1)4
.

Solution by Hideyuki Ohtsuka.
The inequality (iv) is not correct. We prove (i), (ii), (iii), (v) and (vi).

We use Hölder’s inequality
(

n
∑

k=1

apk

)1/p( n
∑

k=1

bqk

)1/q

≥

n
∑

k=1

akbk, (1)

where ak > 0, bk > 0 for all k = 1, . . . , n, and p > 0, q > 0 with 1/p + 1/q = 1. Let xk > 0

and yk > 0 for k = 1, . . . , n. Letting ak = xk/y
1/q
k and bk = y

1/q
k in (1), we get

(

n
∑

k=1

xpk

y
p/q
k

)1/p( n
∑

k=1

yk

)1/q

≥

n
∑

k=1

xk.

Raising the above inequality to power p we get
(

n
∑

k=1

xpk

y
p/q
k

)(

n
∑

k=1

yk

)p/q

≥

(

n
∑

k=1

xk

)p

.
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Since p/q = p− 1, we obtain
n
∑

k=1

xpk
yp−1
k

≥
(
∑n

k=1 xk)
p

(
∑n

k=1 yk)
p−1 . (2)

Note that
∑n

k=1 F
2
k = FnFn+1.

If xk = F 2
k , yk = k2 and p = 2, by (2) we get (i) since

n
∑

k=1

F 4
k

k2
≥

6F 2
nF

2
n+1

n(n+ 1)(2n + 1)
>

6F 2
nF

2
n+1

n(n+ 2)(2n + 1)
.

If xk = F 2
k , yk = k and p = 3, by (2), we obtain (ii).

If xk = F 2
k , yk = k2 and p = 3, by (2), we obtain (iii).

If xk = F 2
k , yk = k3 and p = 2, by (2), we obtain (v).

If xk = F 2
k , yk = k4, by (2), we obtain (iv).

Editor’s comment: In a correspondence of January 12, 2015, Kenneth B. Davenport
points out that parts (v) and (vi) are immediate consequences of the published solution to
B1130 in volume 52, page 183.

Also solved by Kenneth B. Davenport, Dmitry Fleischman, G. C. Greubel,
Zbigniew Jakubczyk, Nicuşor Zlota, and the proposers.

Summation Formulas for Fibonomials and Their Squares
with Fibonacci Coefficients

H-764 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 52, No. 4, November 2014)

Let

(

n

k

)

F

denote the Fibonomial coefficient. For n ≥ 1, prove that

(i)
n
∑

k=0

F2(n−k)

(

2n

k

)

F

=
FnFn+1

F2n−1

(

2n

n

)

F

;

(ii)
n
∑

k=0

F2(n−k)

(

2n

k

)2

F

=
Fn

Ln

(

2n

n

)2

F

.

Solution by the proposer.

Let s be an even integer. First, we prove the following identities.

(1) Fs−1Fs−2n−2 + FnFn+1 = Fs−n−1Fs−n−2;
(2) FsFs−2n−2 + F 2

n+1 = F 2
s−n−1.

We use the identity

Fr+pFr+q − FrFr+p+q = (−1)rFpFq (see [1](20a)). (3)

(1) Letting r = s− 1, p = −n, and q = −n− 1 in (3), we have

Fs−n−1Fs−n−2 − Fs−1Fs−2n−2 = (−1)s−1F−nF−n−1.

Therefore, we get the desired identity.
(2) Letting r = s and p = q = −n− 1 in (3), we have

F 2
s−n−1 − FsFs−2n−2 = (−1)sF 2

−n−1.

Therefore, we get the desired identity.
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(i) For s > n ≥ 0, we show that

n
∑

k=0

Fs−2k

(

s

k

)

F

=
Fs−n(Fn + Fs−n−1)

Fs−1

(

s

n

)

F

. (4)

The proof is by mathematical induction on n. For n = 0, we have that both the left and
right-hands are Fs. We assume that (4) holds for n. For n+ 1, we have

n+1
∑

k=0

Fs−2k

(

s

k

)

F

= Fs−2(n+1)

(

s

n+ 1

)

F

+
n
∑

k=0

Fs−2k

(

s

k

)

F

= Fs−2n−2

(

s

n+ 1

)

F

+
Fs−n(Fn + Fs−n−1)

Fs−1

(

s

n

)

F

= Fs−2n−2

(

s

n+ 1

)

F

+
Fs−n(Fn + Fs−n−1)

Fs−1

(

Fn+1

Fs−n

)(

s

n+ 1

)

F

=
Fs−1Fs−2n−2 + FnFn+1 + Fs−n−1Fn+1

Fs−1

(

s

n+ 1

)

F

=
Fs−n−1Fs−n−2 + Fs−n−1Fn+1

Fs−1

(

s

n+ 1

)

F

(by (1))

=
Fs−(n+1)(Fn+1 + Fs−(n+1)−1)

Fs−1

(

s

n+ 1

)

F

.

Thus, (4) holds for n+ 1. Therefore, (4) is proved.
Letting s = 2n in (4) for n ≥ 1, we have

n
∑

k=0

F2(n−k)

(

2n

k

)

F

=
Fn(Fn + Fn−1)

F2n−1

(

2n

n

)

F

=
FnFn+1

F2n−1

(

2n

n

)

F

.

(ii) For s > n ≥ 0, we show that
n
∑

k=0

Fs−2k

(

s

k

)2

F

=
F 2
s−n

Fs

(

s

n

)2

F

. (5)

The proof is by mathematical induction on n. For n = 0, we have that both the left and
right-hands are Fs. We assume that (5) holds for n. For n+ 1, we have

n+1
∑

k=0

Fs−2k

(

s

k

)2

F

= Fs−2(n+1)

(

s

n+ 1

)2

F

+

n
∑

k=0

Fs−2k

(

s

k

)2

F

= Fs−2n−2

(

s

n+ 1

)2

+
F 2
s−n

Fs

(

s

n

)2

F

= Fs−2n−2

(

s

n+ 1

)2

F

+

(

F 2
s−n

Fs

)(

F 2
n+1

F 2
s−n

)(

s

n+ 1

)2

F

=
FsFs−2n−2 + F 2

n+1

Fs

(

s

n+ 1

)2

F

=
F 2
s−(n+1)

Fs

(

s

n+ 1

)

F

(by (2)).

Thus, (5) holds for n+ 1. Therefore, (5) is proved.
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Letting s = 2n in (5) for n ≥ 1, we have

n
∑

k=0

F2(n−k)

(

2n

k

)2

F

=
F 2
n

F2n

(

2n

n

)2

F

=
Fn

Ln

(

2n

n

)

F

.
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Cauchy-Schwarz to the Rescue

H-765 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.
(Vol. 53, No. 1, February 2015)

Prove that for positive integer n and m > 0 we have:

(i)
L4
n + L4

n+1

LnLn+1
+

L4
n+1 + L4

n+3

Ln+1Ln+3
+

L4
n+3 + L4

n

Ln+3Ln
≥

2

3
L2
n+4;

(ii)

(

n
∑

k=1

F 2m+4
k

)(

n
∑

k=1

1

F 2m
k

)

≥ F 2
nF

2
n+1;

(iii)

(

n
∑

k=1

L2m+4
k

)(

n
∑

k=1

1

L2m
k

)

≥ (LnLn+1 − 1)2;

(iv)

(

n
∑

k=1

Fm+2
k

)(

n
∑

k=1

1

Fm
k

)

≥ (Fn+2 − 1)2;

(v) 1 +
n
∑

k=1

Fm+1
k

Fm
n−k+1

≥ Fn+2 and 3 +
n
∑

k=1

Lm+1
k

Lm
n−k+1

≥ Ln+2.

Solution by Ángel Plaza.

(i) Note that for positive real numbers x, y we have

x4 + y4

xy
≥ x2 + y2

by Muirhead’s inequality. Therefore the left-hand side of the proposed inequality is

LHS ≥ 2
(

L2
n + L2

n+1 + L2
n+3

)

.

Since Ln+4 = Ln+3 + Ln+1 + Ln, the conclusion follows because for x, y, z > 0 we have

2(x2 + y2 + z2) ≥
2

3
(x+ y + z)2, that is 3(x2 + y2 + z2) ≥ (x+ y + z)2,

by the Cauchy-Schwarz inequality.
(ii) By the Cauchy-Schwarz inequality, the left-hand side is

LHS ≥

(

n
∑

k=1

F 2
k

)2

= (FnFn+1)
2.
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(iii) Follows as in (ii) using that
(

n
∑

k=1

L2
k

)2

= (LnLn+1 − 1)2.

(iv) Follows again by the Cauchy-Schwarz inequality and using that
(

n
∑

k=1

Fk

)2

= (Fn+2 − 1)2.

(v) This follows by the Chebyshev’s sum inequality:

n
∑

k=1

Fm+1
k

Fm
n−k+1

≥

n
∑

k=1

Fm+1
k

Fm
k

=

n
∑

k=1

Fk = Fn+2 − 1.

Analogously,
n
∑

k=1

Lm+1
k

Lm
n−k+1

≥

n
∑

k=1

Lm+1
k

Lm
k

=
n
∑

k=1

Lk = Ln+2 − 3.

Also solved by Kenneth B. Davenport, Dmitry Fleischman, Hideyuki Ohtsuka,
Nicuşor Zlota, and the proposers.

A Quadruple Iterated Sum of Fourth Powers of Fibonacci Numbers

H-766 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 53, No. 1, February 2015)

Let n = m+ 2. For m ≥ 1, prove that

m
∑

h=1

h
∑

i=1

i
∑

j=1

j
∑

k=1

F 4
k =

4F 4
n + n4 − 5n2

100
.

Solution by Zhou Fangmin.

We use the following facts:

(1)

∞
∑

n=1

F 4
nx

n =
x− 4x2 − 4x3 + x4

1− 5x− 15x2 + 15x3 + 5x4 − x5
, A(x),

(2)
1

1− x

∞
∑

n=0

anx
n =

∞
∑

n=0

anx
n
·

∞
∑

n=0

xn =

∞
∑

n=0

(

n
∑

m=0

am

)

xn,

(3)

∞
∑

n=0

nkxn =

(

x
d

dx

)k 1

1− x
, k ∈ N.

The desired equation is equivalent to (note that F0 = 0, and

4F 4
1 + 14 − 5 · 12 = 4F 4

2 + 24 − 5 · 22 = 0),

so

x2
∑

m≥0





m
∑

h=1

h
∑

i=1

i
∑

j=1

j
∑

k=1

F 4
k



xm = x2
∑

m≥0

4F 4
n + n4 − 5n2

100
xm =

∑

n≥0

4F 4
n + n4 − 5n2

100
xn,
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and

x2 · A(x) ·
1

(1− x)4
=

1

100

(

4A(x) +

(

x
d

dx

)4 1

1− x
− 5

(

x
d

dx

)2 1

1− x

)

,

and the above equation can be easily checked manually or by a computer algebra program.

Editor’s comment: Helmut Prodinger sent in a one line Maple code which can be used
to give a computer assisted proof of the desired identity.

Also solved by Kenneth B. Davenport, Dmitry Fleischman, Harris Kwong,
Nathan Mcanally, Helmut Prodinger, and the proposer.
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