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When we speak of a Fibonacci matrix, we shall have in mind matrices which

contain members of the Fibonacci sequence as elements. An example of a Fibonacci

matrix is the Q matrix as defined by King in [1], pp. 11-27, where

:/1 1)

Q
oo
The determinant of Q is -1, written det @ = -1. From atheoremin matrix theory,
det Q" = (det Q" = (1)

By mathematical induction, it can be shown that

so that we have the familiar Fibonacci identity

2
P Foor ~ By
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The lambda function of a matrix was studied extensively in [2] by Fenton
S. Stancliff, who was a professional musician. Stancliff defined the lambda func-
tion A(M) of a matrix M as the change in the value of the determinant of M when
the number one is added to each element of M. If we define (M + k) to he that
matrix formed from M by adding any given number k to each element of M, we

have the identity

1) det (M + k) = det M + k \(M).
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For an example, the determinant x(Qn) is given by

F + 1 F o+ 1|
n n+1 n n
NQT) = - det @
F o+ 1 F + 1
n n-1
_ 2 -2 - n
(F o Foqy - F)y+ F +F ., -2F)-detQ
- Fn—S

which follows by use of Fibonacci identities. Now if we add k to each element

of Qn, the resulting determinant is

n+1 n _ 1 v
= detQ + k I‘n_g .

However, there are more convenient ways to evaluate the lambda function.
For simplicity, we consider only 3 x 3 matrices.
THEOREM. For the given general 3 x 3 matrix M, (M) is expressed by either

of the expressions (2) or (3). For

2 b c
M= {d e f R
g h j
' a+e- (b +d) b+1f-(+e)|
@) o - ;
d+h - (g+e) e+ j - (h+ 1)
or
1 b c} a 1 ¢ a b 1
(3) A(M) =11 e f]+|d 1 fl+]d e 1
1 J g 1 ] g 1

Proof: This is made by direct evaluation and a simple exercise in algebra.
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An application of the lambda function is in the evaluation of determinants.
Whenever there is an obvious value of k such that det (M + k) is easy to evaluate,

we can use equation (1) advantageously. To illustrate this fact, consider the matrix

/ 1000 998 554
M = - 990 988 554
675 553 554

We notice that, if we add k= -554 to each element of M, then det (M+Kk) = 0

since every element in the third column will be zero. From (2) we compute

and from (1) we find that

0 = det M + (-554) (1200) ,

so that det M = (554) (1200).

Readers who enjoy mathematical curiosities can create determinants which
are not changed in value when any given number k is added to each element, by
writing any matrix D such that 2(D) = 0.

LEMMA: If two rows (or columns) of a matrix D have a constant difference be-
tween corresponding elements, then \(D) = 0.

Proof: Evaluate (D) directly, by (2) or (3).

For example, we write the matfix D, where corresponding elements in the first
and second rows differ by 4, such that

1 2 3] 1+ k 2+k 3+k|
|
detD = |5 6 7| = |5+k 6+k 7+k| = 24
4 9 8 4+k 9+k 8+Kk

Now, we consider other Fibonacci matrices. Suppose that we want to write

a Fibonacci matrix U such that det U = Fn. Now
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a 0 0|
X b 0| = abd.
y zZ d

We can write Fn = By F = FFF = FpFyF for any n, and for some n we

will also have other Fibonacci factorizations. Hence, Frl = det U for

where ¥y = 0. If we choose m = k = 3 and p = 2, we find that NU) = 0. If we
choose m=1or2, k=1or 2, andlet p be an arbitrary integer, then \(U) = Fn'

A more elegant way to write such a matrix was suggested by Ginsburg in [3 ],

who showed that if a = F2p, c=Db-= F2p+1’ d=¢e¢= F2p+2’ and f= F2p+3’
then det B = n, where
a b n
B = c d n
e f n
Letting n = Fm’ we can write Fm = det U, where
Foo  Topir T
U= Fopr1 Toprz  Fm
F2p+2 F2p+3 Fm
Using equation (3) we have
1 b a 1 F a b 1
m m
MUy = |1 d Fm + {c 1 Fm + 1c d 1
1 f F e 1 F e f 1
m m

Hi
!

0+ 0+ l/Fm(detU) =1
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If we let k = Fm—l’ from (1) we see that

det (U + Fm—l) = Fm + (Fm_l) (1) = Fm+1
Notice the possibilities for finding Fibonacci identities using the lambda func-
fion and evaluation of determinants. As a brief example, we let k = Fn and con-

sider det (Qn + Fn)’ which gives us

n+1 * Fn Fn * Fn 1 n n
= detQ + F \NQ)
F + F F + F
n n n-1 n
or
n+2 2 Fn 0
= (-1)" + F_F__
9 F F n n-3
n n+1
so that
4F = F _F FF .+ (1)t
n  n+t2 n+tl T n n-3 )

As a final example of a Fibonacei matrix, we take the matrix R, given by

R=1{0 1 2
1 1 1

which has been considered by Brennan [ 4].

It can be shown by mathematical induction that

Fn_l Fn-l Fn Fn

n 2 _ -
R™ = 2 Fn-l Fn n+1 Fn—l Fn 2 rn Fn+1

o F F

n n n+1 n-1
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The reader may verify by equation (2) and by Fibonacci identities that

P+ F o aF ¥ 2F F +2F F - F' _
A(Rn) _ n- n+1 n-1"n n-1"n n- nt+l n n+1
3F . F - F?_ p? < o T T
n-1"n n Pn+l * Fn Fn+1 ZI1n+1 3Fn F1r1+1 I‘n I111-1
F2n—3 Fon-2
= n,.?2
= (-1)VNF ~ F
-F? -F__F + (- T 1 s Py
n-2 n-2 " n-1 -1)

Here we see that the value of (Rn) is the center element of Rn‘2 multiplied by

.
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