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The Fibonacci sequence i s defined by the r e c u r r e n c e relat ion, 

(1) V 2 = V l + % , n = 0, 1, 2, 

and the initial values u0 = 0 and VLt = 1. Lucas [2, pp. 297-301] has shown that 
every integer , m5 divides some member of the sequence, and also that the sequence 
is periodic modulo m for every m. By this we mean there is an integer, k, such 
that 

(2) u k + = u (mod m) , n = 0, 1, 2, *** . 

Definition. The period modulo m, denoted by s(m), is the smal les t pos i -
tive integer , k, for which the system (2) i s satisfied. 

Definition. The rank of apparation of m, denoted by f(m), is the smal les t 
positive integer , k, for which u, = 0 (mod m). 

Wall [3] has shown that 

(3) u n = 0 (modm) iff f(m)|n. 

In par t icu la r , since u , . = un = 0 (mod m) we have 1 ' s(m) u ; 

(4) f(m) |s(m) . 

Definition. We define a function t(m) by the equation f(m)t(m) = s(m). 
We note that t(m) is an integer for all m. The purpose of this paper is to 

give c r i t e r i a for the evaluation of t(m). 
Now we give some resu l t s which will be needed la ter . 

2 n (5) u • = u u + (-1) v ' n-1 n n-2 v ; 

This can be proved by induction, using the r ecu r r ence relat ion (1). 

This paper was par t of a thes is submitted in 1961 to Oregon State University in par t ia l 
fulfillment of the requi rements for the degree of mas t e r of Ar t s . 
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/ ^ <?n - (3n , 1 + N/5 , . (6) u = ——-f1- , where # = — 5 and £> 1 + V5 , „ 1 - \/5 
— w n o T O ru — • 

n a - j8 

This is the well-known "Binet fo rmula . " It gives a natural extension of the Fibonacci 
sequence to negative values of n. By using the relat ion a (3 = (-1) , we find 

(7) u_„ = (-1) u. n+1 
n * - S i 

F r o m this we see that the r e c u r r en ce (1) holds for the extended sequence. 
By solving the sys tem 

ak - /3k = (a - (3) u k 

a • ak - /3 . /3k = (or - 0) u k + 1 

k k 
for a and ft , we obtain 

or = u. k+1 
/3uk = (1 - £ ) u k + u k _ x = , u k + u k _ x 

and 

Then 

/3k =, u k + 1 - « u k = (1 - a) u k + u k _ x = £ u k + u k - 1 

{a - 0 , ^ = «n k + r - ^ = ( .u , + V l , V - (̂ uk + V l)V 

By expanding and recombining we get (for n > 0) 

%k+r = X I .UkVlVj 

Now if we set k = f(m). we find 

(8) u r, x, = Up. . , u (mod m) 
v ; nf(m)+r f(m)-.l r 
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We note that this is valid for negative as well as non-negative in tegers , r . 
Lemma 1. t(m) is the exponent to which uf , . - belongs (mod m). 

n Proof: Suppose u f / . ., = 1 (mod m). Then from (8) we have u -, x, - ^ f (m)-l x ; v ; nf(m)+r 
= u (mod m) for all r . It follows from the definition of s(m) that s(m) _< nf(m) 
and thus u f , ,_-. = 1 (mod m) implies t(m) = s(m)/f(m) <_ ne 

Now we set r = 1 and n = t(m) in (8) to obtain 

t(m) -, , -, x 
uf ' = 1 1 , / .-, v, -, = u , ,, .. = ut = 1 (mod m) . 

f (m)-l t(m)f(m)+l s(m)+l x v ; 

n Thus t(m) is the smal les t positive n for which u f , , = 1 (mod m), that i s , 
u f , ._1 belongs to t(m) (mod m). 

Theorem 1. For m > 2 we have 
i) t(m) = 1 or 2 if f(m) is even, and 

ii) t(m) = 4 if f(m) is odd. 
Also, t ( l ) = t(2) = 1. Conversely, t(m) = 4 implies f(m) is odd, t(m) = 2 i m -
plies f(m) is even, and t(m) = 1 implies f(m) is even or m = 1 or 2. 

Proof. The cases m = 1 and m = 2 a re easily verified. Now suppose 
m > 2 and se t n = f(m) in (5) to get 

Uf(m)-1 - u f (m) u f ( m )-2 + ( " 1 ) f ( m ) - ( " 1 ) f ( m ) (modm) . 

If f(m) is even we have u?, x _. = 1 (mod m), and i) follows from Lemma 1. v ' t (m) - l ' 
If f(m) i s odd we have uS, x -. = -1 (mod m), and since m > 2 ,u | , . 1 v ' f (m)-l / ? ' l (m) - l 

^ 1 (mod m). This implies u f , ,_-. ^ ± 1 (mod m) and then 

3 2 i Up, x *- = u_p. . _. u„. , _, = -Up, , ., ± ± 1 (mod m). f (m)- l f (m)- l f (m)- l f (m)- l r v ' 

Finally, u4 = (u2 )2 = (-1)2 = 1 (mod m) and, by Lemma 1, t(m) = 4. 

The converse follows from the fact that the cases in the direct s ta tement of 
the theorem are all inclusive. 

Theorem 2. Let p be an odd pr ime and let e be any positive integer. Then 

i) t(pe) = 4 if 2 | f(p), 

ii) t(pe) = 1 if 2 | f(p) but 4 1 f(p), 
iii) t(pe) = 2 if 4 | f(p), and 
iv) t(2e) = 2 for e 2 3 and t(2) = t(22) = 1 . 
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Conversely, if q r ep re sen t s any p r i m e , then t(q ) = 4 implies f(q) is odd, 
e a e 

t(q ) = 2 impl ies 4|f(q) or q = 2 and e _>. 3, and t(q ) = 1 implies 2jf(q) but 
4 | f(q) or q e = 2 or 4. 

Proof. Wall [3, p. 527] has shown that if p n + 1 \ u then f(pn + 1)= pf(pn). 
•It follows by induction that f(p ) = p f(p), where k is some non-negative integer . 

e We emphasize that f(p ) and f(p) a r e divisible by the same power of 2, since this 

fact i s used severa l t imes in the sequel without further explicit re ference . 
e e 

In case i) , f(p ) i s odd and the resu l t is given by setting m = p in Theorem 1. 
e e 

In cases ii) a n d i i i ) , f(p ) i s even and we may set m = p , n = 1, and r - | f (p G ) in (8) to get 

UI-P/ p\ - U4T/ P\ 1 u H o, «x (mod p e ) | f (p e ) f (p e ) - l - | f ( p e ) v P ' 2 

which, in view of (7), i s the same as 

Uf(pe)-1 u i f (pe) s . ( -D 2 i V F / , i u i f ( p e ) < m o d ^ 
l f (P e ) + 1 „ / ™ H r ^ 

2 

Now |f(pe). = p-p^(p), where k i s some non-negative integer , and we see that 
f(p) I if(pe). Then from (3) we have p | u l f , e so that we may divide the above 

2 2XvP ) 
congruence by u l f , y We get 

i , 
Af(p6)-u . ^ ^ .= ( - l ) 2 f ( P e ) + 1 ( m o d p e ) . 

Now in case i i) , ~f(p) i s odd and so is H{pe)f and the las t congruence gives 
2 <* 

u f / ^x - = • 1 (mod pe) and thus , by Lemma 1, t (pe) = 1 . i lp^J- l 
In case iii) the congruence becomes 

since 

a r e both even. Then 

u f (pe) - i = - 1 ( m o d P e ) '. 

Hip) and if(pe> 

V ) - ! s l (modpe) 

and by Lemma 1 again, t(pe) = 2. 
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In case iv) we can easi ly verify t(2) = t(22) = 1. That t(2e) = 2 for e ^ 3 
follows from resu l t s given by Carmichael [1, p. 42] and Wall [3 , p. 527]. These 
resu l t s a r e , respect ively: 

A. Let q be any p r ime and let r be any positive integer such that (q, r) = 1. 
xl , X+l I ,-, X+a X+a+1 

we find that 2 Iuv.f/o3\ ^ 2 |k- It follows from (3) that f(2 ) must be a m u l t i -

If q u and q / u , then q u _ and q / u _ except when q = 2 
I n A n I nrqa H /] n r q a L 

and X = 1. 
B. Let q be any p r ime and let X be the la rges t integer such that s(q ) 

e-X = s(q). Then s(qe) = q s(q) for e > \ . 
The hypotheses of A. a re satisfied by q = 2, X = 3, and n = f(23), and 

->3+a| .ff 0 a | T T4-.cn e /OV4.U 4. .c/o3+ax 
' \ f ( 2 3 ) 

pie of f(23), hence f (2 3 + a ) = 2af(23). Since f(23) = 2f(2) we have f(2e) = 2e"2f(2) 
for e ^ 3. Now set q = 2 and X = 1 in B. We get s(2e) = 2 e _ 1 s (2 ) . Thus for 
e ^ 3 we have 

t ( 2 e } = 3(2!) = f^m = 2 . 
f(2e) 2 e f(2) 

The converse follows from the fact that the cases in the d i rec t s ta tement of 
the theorem a re all inclusive. This completes the proof, 

Now we give a l emma which is needed in the proof of the next theorem. 
Lemma 2. If m has the p r ime factorization 

m = qt q2 . . . qr , then 
n 

i) s(m) = 1. c. m. ( s (q . 1 )} , and 
l ^ i ^ 

ii) f(m) = 1. c. m. ( f f q 1 ) } 
l < i ^ n 1 

Wall has given i). The proof of ii) is as follows: Since the q.1 a re pai rwise 
relat ively p r i m e , m |u , i s equivalent to q. i u, (i = 1, 2, 0°* , n), which, by (3), 
i s equivalent to f (q. i ) k (i = 1, 2, •«• , n). The smal les t .positive k which s a t i s -
fies these conditions i s 

k = 1. c. m. ( f fa? 1 )} , 
l < i < n 1 

which, according to the definition of f(m), gives the des i red resul t . 
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Theorem 3. We have 

i) t(m) = 4 if m > 2 and f(m) i s odd. 
ii) t(m) = 1 if 8/f m and 2 | f (p) but 4 f f (p) for every odd p r ime , p , which 

divides m, and 
iii) t(m) = 2 for all other m. 

Proof: F rom what has already been given in Theorem 1, we see that it suf-
fices to show that the conditions given here in ii) a re both necessa ry and sufficient 
for t(m) = 1. Let m have the p r ime factorization m = q 1

1 q 2
2 q n and set 

m 

f(q^) = 2 V (i = 1, 2, - , n) , 

where the K. a re odd in tegers . By Theorem 1, we may set 

at 6 i 
t(q x ) = 2 (i = 1, 2, ••• , n) where 6. = 0, 1, or 2. 

Then s ^ 1 ) = f (q?i )t (q?i) = 2 1 1 K. (i = 1, 2, ••• , n). F rom Lemma 2 we 

have, where K is an odd integer , 

, x 1. c. m. r / # i \ i 0max(7i + &\ )xr 
s(m) = - , ' . „ i s f a - M r = 2 w i i 'K, 

' l < i < n L l J 

£/ . 1. c. m. p , ^ . 0 max^ i T / , 
f(m) = , . ffa-1) = 2 iK, and 

x ; l £ i < n VHi ; 5 

4., ^ i X/-P/ x 0max(7-+<5 ) - m ax7-
t(m) = s(m)/f(m) = 2 x i i ' i 

Now suppose t(m) = 1. Then max (7. + 5.) = m a x / . . Let y, = m a x / . . We have 

7, <L 7i + 5, < max (7 + 6.) = max 7, = 7u , 

Q'kv ~6k and thus <5k = 0 and t (q£ K ) = 2 = 1. It follows from Theorem 2 that 4 ( f ( q k
k ) , 

that i s , that y^ < 1. Then for all i , 

6. < max (7. + 6.) = max 7. = 7 , < 1 . 

F u r t h e r m o r e , 6. = 1 is impossible , for 5. = 1 is the same as t(q. i ) = 2 which 

impl ies , by Theorem 2, that 2 f(q. *) and thus 7. > 1. Then we would have 
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/. + t > 2j which is contrary to max (:>'. +•£.) < 1. Thus for all i , 6 
id t 

in ii). 

1 1 3 z. " I I 7 ' 1 
CX' ^ 1 

and t (q . 1 ) = 2 = l s which, by Theorem 2, is equivalent to the conditions given 

Now suppose, conversely, that the conditions given in ii) a r e satisfied, which, 
as we have just seen, is equivalent to the condition t (q . x ) = 1 for all i. Then 

s(q?i) = f(qj'i) t ( q^ ) for all i. 

Then Lemma 2 gives 

. , 1. c. m. r . a\ . -, 1. c . m . r p / ^ i x i P. . 
S ( m ' = l<i<_n {S<V>} = l<i<n ^t(qi }'' = f ( m ) 

and thus t(m) = s(m)/f(m) = 1. 
Our las t theorem is of ra the r different charac te r . Once again, we need a p r e -

l iminary lemma. 
Lemma 3. Let p be an odd p r ime . Then 

i) f(P) | (p - 1) if p = ±. 1 (mod 10) , 
ii) f(p) | (p + 1) if p = ± 3 (mod 10) , 

iii) s(p) | (p - 1) if p = i l (mod 10) , and 

iv) s ( p ) | ' ( p + 1) but s(p) | 2(p+ 1) if p SE+ 3 (mod 10). 

Lucas [2, p. 297] gave the following resul t : 

P | U p - l i f P " ~ X ^ m o d 1 0 ) a n d P I U
D + 1

 i f P = - 3 (mod 10). 

We get i) and ii) by applying (3) to this resul t , Wall [3. p. 528] has given iii) and iv). 
Theorem 4. Let p be an odd pr ime and let e be any positive integer. Then 

i) t(pe) = 1 if p = 11 or 19 (mod 20), 
ii) t(pe) = 2 if p = 3 or 7 (mod 20), 

iii) t(pe) = 4 if p = 13 or 17 (mod 20), and 

iv) t(pe) 4 2 if p =• 21 or 29 (mod 40). 

Proof: Theorem 2 shows that t(p ) is independent of the value of e, hence 
i s sufficient to consider e = 1 throughout the proof. 
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If follows from the definition of ff(p) that p j( u f , . so that by F e r m a t r s 
theorem, 

u f (p) - l ~ X ( m o d p ) ' 

Then, since u f . . 1 belongs to t(p) (mod p), it follows that t(p) j (p- l ) . Now if 
p = 3 (mod 4) we have 4 \ (p - 1) and thus t(p) ^ 4. 

i) Here p = 3 (mod 4) so t(p) ^ 4. Suppose t(p) = 2. Then, by Theorem 2, 
4 | f(p). Now p = ± 1 (mod 10) and, by Lemma 3 i ) , f(p) (p - 1) and thus 

4 | (p - 1). But this is impossible when p = 3 (mod 4), hence t(p) ^ 2 and we 
must have t(p) = 1. 
ii) Again p = 3 (mod 4) and t(p) ^ 4. Also p = ±. 3 (mod 10) and it follows from 
Lemma 3 that s(p) ^ f(p) and t(p) = s(p)/f(p) ^ 1. Hence t(p) = 2. 
iii) We have just seen that t(p) ^ 1 when p = ± 3 (mod 10), which i s he re the case . 
Also, f(p) J (p + 1). Now p = 1 (mod 4) so that 4 j (p + 1) and thus 4 | f(p), 
and it follows from Theorem 2 that t(p) ^ 2. Hence t(p) = 4. 

iv) Suppose t(p) = 2. Then by Theorem 2, 4 | f(p) and thus 8 js(p) (since s(p) 
= t(p)f(p) = 2f(p)). F u r t h e r m o r e , s(p) | (p - 1) since p = ± 1 (mod 10). Then 
t(p) = 2 impl ies 8( (p - 1). But we have p - 1 = 20 or 28 (mod 40) which gives 
p - 1 = 4 (mod 8), so that 81 (p - 1) i s impossible . Hence t(p) ^ 2. 

We naturally ask if a ^ t h i n g more can be said about t(p ) for p = 1, 9, 21 , 
29 (mod 40). The following examples show that the theorem is "complete'1: 

p = 1 (mod 40) 
p = 9 (mod 40) 
p = 21 (mod 40) 
p = 29 (mod 40) 

t(521) = 

t(809) = 
t(101) = 
t(29) = 

1, 
1, 

1, 
1, 

t(41) = 2, 

t(409) = 2, 
t(61) = 4. 
t(109) = 4. 

t(761) 
t(89) = 

= 4 
4. 

Now we might ask whether there is a number, m, for which t(p ) is always 

determined by the modulo m res idue c lass to which p belongs. The answer to 

this question is not known. We note that the pr inciples upon which the proof of 

Theorem 4 is based a r e not applicable to other moduli. 
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SPECIAL NOTICE 
The Fibonacci Associat ion has on hand 14 copies of Dov Ja rden , Recur ren t 

Sequences, Riveon Lematematika, J e r u s a l e m , I s rae l . This i s a collection of papers 
on Fibonacci and Lucas numbers with extensive tables of factors extending to the 
385th Fibonacci and Lucas numbers . The volume sel ls for $5.00 and is an excel -
lent investment . Check or money o rder should be sent to Verner Hoggatt at San Jose 
State College, San Jose , Calif. 

REFERENCES TO THE QUARTERLY 

Martin Gardner , Edi tor , Mathematics Games , Scientific Amer ican , June , 1963 
(Column devoted this issue to the helix. ) 

A Review of The Fibonacci Quarter ly will appear in the Feb. 1963 issue of the 
Recreat ional Mathematics Magazine. 

FIBONACCI NEWS 

Brother U. Alfred repor t s that he is current ly offering a one unit course on 

Fibonacci Numbers at St. Mary ' s College, 

Murray Berg , Oakland, Calif. , r epor t s that he has computed phi to some 

2300 decimals by dividing F l l o 0 4 by F11003 on a computer . Any inquir ies should 

be addressed to the editor. 

Charles R. Wall, Ft. Worth, Texas , r epor t s that he is working on his m a s t e r ' s 

thesis in the a rea of Fibonacci re la ted topics. 

SORTING ON THE B-5000 - - Technical Bulletin 5000-21004P Sept . , 1961, 

Burroughs Corporation, Detroit 32, Michigan. 

This contains in Section 3 the use of Fibonacci numbers in the merging of infor-
mation using three tape units instead of the usual four thus effecting considerable 
efficiency. (This was brought to our attention by Luanne Angle my er and the pamphlet 
was sent to us by Ed Olson of the San Jose office.) 



46 HAVE YOU SEEN? [Apri l 
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l i t t le general ized resu l t s imi la r to problem B-2 of the Elementary Prob lems 
and Solutions section of the Fibonacci Quarter ly , Feb. , 1963. 

A. Rotkiewicz, On Lucas Numbers with Two Intr insic P r i m e Divisors , Bulletin 
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