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The Fibonacci sequence is defined by the recurrence relation,

(1) u

il

n+2 Upet * Uy o n=0,1,2,
and the initial values uy; = 0 and uw; = 1. Lucas [2, pp. 297-301] has shown that
every integer, m, divides some member of the sequence, and also that the sequence
is periodic modulo m for every m. By this we mean there is an integer, k,such
that
(2)

- = 2 eee
Wy = U (mod m) , n 0, 1, 2,

Definition, The period modulo m, denoted by s(m), is the smallest posi-
tive integer, k, for which the system (2) is satisfied.

Definition, The rank of apparation of m, denoted by f(m), is the smallest
positive integer, k, for which u, = 0 (mod m).

K =
Wall [3] has shown that

(3) w =0 (modm) iff f(m)In,

In particular, since u = 1y = 0 (mod m) we have

s(m)
(4) f(m) |s(m)

Definition. We define a function t(m) by the equation f(m)t(m) = s(m).
We note that t(m) is an integer for all m. The purpose of this paper is to
give criteria for the evaluation of t(m).

Now we give some results which will be needed later.

2 n

(5) un—l = unun—Z =D

This can be proved by induction, using the recurrence relation (1).

This paper was part of athesis submittedin 1961 to Oregon State University in partial
fulfillment of the requirements for the degree of master of Arts.
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n n [l
_a -p _1+\/5 _1- N5
(6) uo= - ,vwhere @ =T and 8 = 5 .

This isthe well-known "Binet formula.' It gives a natural extension of the Fibonacci

sequence to negative values of n. By using the relation aan = (—l)n, we find

(1) u = (-1) u

. From this we see that thé recurrence (1) holds for the extended sequence.

By solving the system

for ak and Bk, we obtain

a = U.k+1 - Buk = (1 - B)uk + uk-—l = auk + uk_l
and

B = U, g — 0w = 1 - ) uk = ,Buk+ W g -
Then

nk+r nk+r

@ - P BT = e+ % - B a7

nk+r

By expanding and recombining we get (for n > 0)

n \
N (Y e
Yaikir T/, | ) U Be-1 M
=0\ Y/
Now if we set k = f(m), we find
» = U . u_ (mod m
(8) unf(m)ﬂ‘ N uf(m)—l T )
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We note that this is valid for negative as well as non-negative integers, r.

Lemma 1, t(m) is the exponent to which Up
n —
f(m)-1 = unf(m)+r
=u, (mod m) for all r. It follows from the definition of s(m) that s(m) < nf(m)

(m)-1 belongs (mod m).

Proof: Suppose u 1 (mod m), Then from (8) we have

n _ . . _ !
and thus uf(m)—l = 1 (mod m) implies t(m) = s(m)/f(m) < n,

Now we set r = 1 and n = t(m) in (8) to obtain

ut(m) = u = u =
f(m)-1 tm)fm)+1 — “s(m)+l

u; = 1 (modm).

n

f(m)-1 = 1 (mod m), that is,

Thus t(m) is the smallest positive n for which u
uf(m)_1 belongs to t(m) (mod m).

Theorem 1. For m > 2 ‘we have
i) t(m) = 1 or 2 if f(m) is even, and
ii) t(m) = 4 if f(m) is odd.
Also, t(1) = t(2) = 1. Conversely, t(m) = 4 implies f(m) is odd, t(m) = 2 im-
plies f(m) is even, and t(m) = 1 implies f(m) is evenor m = 1 or 2.

Proof, The cases m =1 and m = 2 are easily verified. Now suppose
m > 2 and set n = f(m) in (5) to get

" f(m) _

U my-1 = Ym)f(my-2 * 1) 1" (mod m)

If f(m) is even we have u 1 (mod m), and i) follows from Lemma 1.

2 =
f(m)-1"
If f(m) is odd we have U‘%(m)—l =

)-1 £ + 1 (mod m) and then

- i 2
1 (mod m), and since m > 2,uf(m)_1

%= 1 (mod m). This implies uf(m

3 — 42

Upm)-1 = Ym)-1%(m)-1 = “Ugm)-1 T £ 1 (mod m).

Finally, (-1)2= 1 (mod m) and, by Lemma 1, t(m) = 4,

4 = (2 2 =
Uim)-1 - ®f(m)-1)
The converse follows from the fact that the cases in the direct statement of
the theorem are all inclusive.

Theorem 2. Let p be an odd prime and let e be any positive integer. Then

i) te®) = 4 if 2} (),

iy te%) = 1 if 2| fp) but 4} £(p),

iii) te®) = 2 if 4] f(p), and

iv) t@2%) = 2 for e> 3 and t(2) = t(2%) = 1.

i
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Conversely, if g represents any prime, then t(qe) = 4 implies f(g) is odd,
t(qe) = 2 implies 4|f(q) or q = 2 and e > 3, and t(qe) =1 implies 2|f(q) but
4y f(q) or qe = 2 or 4.
Proof. Wall [3, p. 527 ] has shown that if pmL1 4 Ug(onys then f(pn+])= pfp™).
It follows by induction that f(pe) = pkf(p), where k is some non-negative integer.
We emphasize that f(pe) and f(p) are divisible by the same power of 2, since this
fact is used several times in the sequel without further explicit reference.
In case i), f(pe) is odd and the resultis givenby setting m = pe in Theorem 1.
) In cases ii) and iii), f(pe) is even and we may set m = pe, n = 1, and
r = 1% in (8) to get

= e
u_;_f(pe) = uf(pe)_1 u_%f(pe) (mod p®)
which, in view of (7), is the same as

1
sE(pe)+1 e
(-1)2 u (mod p°©)
%f(pe)

i

Ytpe)-1 “1ipe)

Now %f(pe) = %—pkf(p), where k is some non-negative integer, and we see that

fp) [ %f(pe)_ Then from (3) we have p [ so that we may divide the above

Uy
11(pe)
congruence by ulf(pe)' We get

2

1
_ s E(pe)+1
= (~1)2 e
uf(pe)_1 = (-1) (mod p*) .

Now in case ii), %f(p) is odd and so is 2lf(pe), and the last congruence gives

=. e ey -

uf(pe)‘_1 1 (mod p€) and thus, by Lemma 1, t(p®) = 1.
In case iii) the congruence becomes

= _ ey -
uf(Pe)-l = -1 (modp*) ,

since

%f(p) and 2lf(pe)

are both even. Then

2 = e
Ufpe)-1 1 (mod p%)

and by Lemma 1 again, t(p€) = 2.
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In case iv) we can easily verify t(2) = t(22) = 1. That t(2%) = 2 for e = 3
follows from results given by Carmichael [1, p. 42] and Wall [3, p. 527]. These

results are, respectively:

A, Let g be any prime and let r be any positive integer such that (q,r) = 1.
ra Matl

If q>\!un and q)\+1/% U then g lunrqa and q /*/unrqa except when q = 2
A= 1.

B. Let g be any prime and let \ be the largest integer such that s(qx)
=s(g). Then s(q€) = qe_)\s(q) for e ‘>)\.
The hypotheses of A, are satisfiedby q = 2, X =3, and n = f(23), and

we find that 2°2 W (3 iE za‘k. It follows from (3) that £(2° %) must be a multi-

ple of £(28), hence £(232) = 2%(23). Since £(23) = 2£(2) we have £(2°) = 2°72((2)
for e = 3. Nowset q =2 and A\ = 1 in B. We get s(2%) = 2° 1s(2). Thus for

and

e = 3 we have

s2%) _ 2@ _
£2%)  2°72%4(2)

t@2% =

The converse follows from the fact that the cases in the direct statement of
the theorem are all inclusive., This completes the proof.

Now we give a lemma which is needed in the proof of the next theorem.

Lemma 2. If m has the prime factorization

ay Oy OZH
m =q; gy e q then

i) sm) = Le.m. {s@@)} , and
1=i=n !

i) fm) = Le.m. {f@")}
1=i=n

Wall has given i). The proof of ii) is as follows: Since the offi are pairwise
relatively prime, mluk is equivalent to q(filuk i=1, 2, °°, n), which, by (3),
is equivalent to f(q?i) k(@ =1, 2, e«s , n). The smallest positive k which satis-
fies these conditions is

k = l.c.m. {f(q(fi)} ,

1=i=n

which, according to the definition of f(m), gives the desired result.
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Theorem 3. We have

i) tm) =4 if m > 2 and f(m) is odd.
ii) t(m)

i

1 if 8/ m and 2[f(p) but 4/ f(p) for every odd prime, p, which
divides m, and
iii) t(m) = 2 for all other m,.
Proof: From what has already been given in Theorem 1, we see that it suf-
fices to show that the conditions given here in ii) are both necessary and sufficient
a @

for t(m) = 1. Let m have the prime factorization m = q‘fl ds qnn and set

f(q?i) = 2K, (=1

y = 2 i =1, 2, *+», n) where éi = 0, 1, or 2,

. e i
Then s(q(;l) = f(q‘fl)t (q‘iﬁ) = 2t IKi (i=1, 2, »«-, n). From Lemma 2 we
have, where K is an odd integer,

1
i

s(m) = L& {s@)} gmax(7; + 6 )y

1<i<n
fm) = 1O gy - oM ang
m) = 1<i<n 9 B ’
/4.0y 2
tm) = s(m)/f(m) = Zmax(71+ i)-max7;

Now suppose t(m) = 1, Then max(71+ 61) = max7y,. Let Y = maxy;. We have

‘/ksyk+ 5k5max(7i+6i) :rnax7/i :7k,

6
and thus 51{ = 0 and t(qlc;k) =2 k = 1. It follows from Theorem 2 that 4 J(’f(qik),

that is, that Vi 1. Then for all i,

6, < max (y;+06;) = maxy, = <1

Furthermore, (5i = 1 is impossible, for éi = 1 is the same as t(qciyi) = 2 which

implies, by Theorem 2, that 2 f(q?i) and thus 75z 1. Then we would have
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“/i+ éi > 2, which is contrary to max (jﬁ»'i + éi) < 1. Thus for all i, 6& =0
. Oj

and t(q(iyl) =2 = 1, which, by Theorem 2, is equivalent to the conditionsgiven

in ii),

Now suppose, conversely, that the conditions given in ii) are satisfied, which,
as we have just seen, is equivalent to the condition t(q?i) = 1 for all i. Then
1)t (@ft) forall i.

S(q?i ) = f(q‘f

Then Lemma 2 gives

l.c.m l.e.m. g, o

N . -r q _ 1
stm) = 77T s@ D} = 7Ty M) = fm)

and thus t(m) = s(m)/f(m) = 1.
Our last theorem is of rather different character. Once again, we need apre-
liminary lemma.

Lemma 3. Let p be an odd prime. Then

i)y f(p) | p-1) if p==1 (mod10) ,
ii) f(p) | @+ 1) if p=+3 (mod10),
iii) s@) | (p-1) if p= =1 (mod 10), and
iv) sp)f @+ 1) but s(p) | 2(p+ 1) if p =+ 3 (mod 10).

Lucas [2, p. 297] gave the following result:

p lu -1 if p =x1 (mod10) and p | up if p ==3 (mod 10).

P +1

We get i) and ii) by applying (3) to this result. Wall [3, p. 528] has given iii)and iv).

Theorem 4., Let p be an odd prime and let e be any positive integer. Then

i) te%) =1 if p =11 or 19 (mod 20),

ii) tp% = 2 if p =3 or 7 (mod 20),
iii) t°) = 4 if p =13 or 17 (mod 20), and
iv) tp%) = 2 if p = 21 or 29 (mod 40).

Proof: Theorem 2 shows that t(pe) is independent of the value of e, hence

is sufficient to consider e = 1 throughout the proof.
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If follows from the definition of ff(p) that p } u

theorem,

£(p)-1 so that by Fermat's

qu)(;)l)_l = 1 (mod p).

Then, since uf(p)_1 belongs to t(p) (mod p), it follows that t(p)i(p—l). Now if
p= 3 (mod 4) we have 4 / (p - 1) and thus t(p) # 4.
i) Here p = 3 (mod4) so t(p) # 4. Suppose t(p) = 2. Then, by Theorem 2,
4 [f(p). Now p = +1 (mod10) and, by Lemma 3 i), f(p) (p - 1) and thus
4 | (p - 1). But this is impossible when p = 3 (mod 4), hence t(p) # 2 and we
must have t(p) = 1.
ii) Again p =3 (mod 4) and t(p) # 4. Also p = = 3 (mod 10) and it follows from
Lemma 3 that s(p) # f(p) and t(p) = s(p)/f(p) # 1. Hence t(p) = 2.
iii) We have just seen that t(p) # 1 when p= + 3 (mod 10), which is here the case.
Also, f()| (p+1). Now p =1 (mod4) so that 4/ (p+ 1) and thus 4 } f(p),
and it follows from Theorem 2 that t(p) # 2. Hence t(p) = 4.
iv) Suppose t(p) = 2. Then by Theorem 2, 4 | f(p) and thus 8 |s(p) (since s(p)
= t(p)f(p) = 2f(p)). Furthermore, s@) |(p - 1) since p = +1 (mod 10). Then
t(p) = 2 implies 8|(p - 1). But we have p - 1 = 20 or 28 (mod 40) which gives
p -1 = 4 (mod 8), so that 8|(p - 1) is impossible. Hence t(p) # 2.

We naturally ask if anything more can be said about t(pe) for p=1, 9, 21,

29 (mod 40). The following examples show that the theorem is ""complete'":

p = 1 (mod40) : t(521) = 1, t(4l) = 2, t(761) = 4.
p = 9 (mod40) : t(809) = 1, t(409) = 2, t(89) = 4.
p = 21 (mod40) : t(101) = 1, t(61) = 4.
p = 29 (mod 40) : t(29) = 1, t(109) = 4.

Now we might ask whether there is a number, m, for which t(pe) is always
determined by the modulo m residue class to which p belongs, The answer to
this question is not known, We note that the principles upon which the proof of

Theorem 4 is based are not applicable to other moduli.
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was sent to us by Ed Olson of the San Jose office, )
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