52 ADVANCED PROBLEMS AND SOLUTIONS [Oct. 1963 ]

We may use this recursion formula to substitute for the last row of the

given determinant, Dn, and then apply standard row operations to get
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It follows immediately by induction that D = (_1)n—1 D,. Since Dy = 2, DI1

_ 2(_1)n—1 _ 2(__1)n+1 )

Also solved by Marjorie Bicknell and Dov Jarden.

Continued from p. 80, "Elementary Problems and Solutions"
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Since Fk+1p + ka and ka + Fk—lp are both congruent to 1 (mod p

+p - 1) by the induction hypothesis and p + p? = 1 (mod p?+ p - 1), the de-
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sired result follows by induction on n .

Also solved by Marjorie R, Bicknell and Donna J, Seaman,




