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1. INTRODUCTION

Let P = {Ppy, Py, P3, -} be any sequence of distinct positive integers,
then

[2e]

m X 0
b, P.
o TT(sex) - TT(n-x™) - Dot
i=1 n=0

i=1

where R(n) is the number of representations of the integer n as the sum of

distinct elements of P. If P, = 2"l ¢ =1, 2,. -..), then R(m) = 1 for

all n = 0. Brown [1] has shown that if P; = 1 and

n
Pn+1 =1 +E Pi 2
i=1

then R(n) = 1 for all n = 0. Here we discuss some consequences of the

condition
n
%
%) P, = 1+Epi.
i=1
i-1
Let Py =1, ifequalityholdsforeach n =1, then P, = 2'™h, i=1. If for

some n, the inequality holds, then R(m) = 0 for some m > 0, which we

call gninteger which is non-representable by P.

2, SOME GENERAL RESULTS

The condition (**) guarantees that Pi # Pj for i # j. Further we may

prove

81
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Theorem 1. Every positive integer N which has a representation by
the sum of distinct elements of P, then that representation is unique.

Proof. Clearly each Pi is its own unique representation since the se-
quence is strictly increasing and Pn+1> Py +Py+Pgt+eee + Pn' Suppose N

had two different representations
k m
DI DI B
i=1 i=1

where A and Bi = 0 or 1 independently, with o = Bm =1, If m =k,
then delete Pm = Pk from each side and continue to do so step-by-step until
the highest order term on the left is different from the highest order term on
the right. Now assume Pk > Pm. This is an immediate contradiction since
Pk > Py +Pytree + P +eee + P g, thus both representations cannot rep-

resent N. This evidently proves Theorem 1.

3. THE NON-REPRESENTABLE INTEGERS

In certain cases, the integers which cannot be represented by sequence
P can be described by a suitable closed form. See [3] and [4], however,
that is not the general situation.

Definition. Let M(n) be the number of positive integers less than n
which cannot be represented by the sequence P.

Theorem 2. If

n
Pn+1 =1 +ZPi ’
i=1

then

M(Pn+1) =P -2

Proof. All the sums of the 2" subsets of {Py, Py, Pg, oo, Pn}

distinct by Theorem 1. These sums are less than Pn+1 =Py + Pyt
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+ P _, thus
n

n

— n —
M(P )—(Pn+1—1)—(2 -1 =P -2

n+1 n+1

since Pn+1 — 1 is the number of positive integers <Pn+1 and the empty sub-
set yields the non-positive sum zero. In fact it is simple to prove further.

Theorem 3, M(Py + Py + -+ +Pn) = M(Py) + - +M(Pn).

_ no oo
Proof. M(Pn+1) =P -2 Since Py+Py+--- +P <P ., then
all the integers between
n
S
1
i=1
and PI1+1 are nori-representable. Thus
n
_ n
M(Py + Py + Py +-oe +P ) = (o -2%) - (P . - Zpi -1
i=1
n
:P1+P2+P3+"'+Pn—(2—1)
=Py + Py + Pyt ot P - (1+ 2224 + 2271

(P - 20) + (Py - 28) + (Pg — 22) + +vx + (P - a1

n
n
QoM@ ,
i=1

which concludes the proof of Theorem 3.

4, M(N) FOR REPRESENTABLE N

The main result in this section is the statement and proof of

Theorem 4. If
k
N = EaiPi s
i=1

then
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where each a, = 1 or O.

Proof. Let
k
N = E & Pl i
i=
then Pk =N < Pk+1' Thus
_ k-1
M@N) = (P, -277) + MN - P, ) ,
k k
by virtue

k-1

P, q k-1
H(lJ"XI):ZR(n)Xn, q=ZPi.
n=0 i=1

In forming these polynomials, the representations using only Py, P,
**» P _, are enumerated by the R(n) for n =10 to n =Py +Py+ -+ +

P The polynomial

k-1°
k-1 P,
T1(1ex1),
i=1

which has degree n = q, has zeros behind this N. Thus, when the factor

(o)

is multiplied in, the R(n) between n > P and n = Py + Py+ -+ + P are

precisely those from n =0 to n =Py +Py+--- +Pr_q1 followed by zero
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up to Pk - 1. Thus if we proceed by induction on the number of summands,
we see the theorem is true for N = Pk' Assume for all N having a repre-

sentation with precisely k -1 summands is such that

k-1
N = ZPi_ ,
=1 !

and
k-1 ) k-1 .
1J.—1 1j—
M(N)=Z(Pia—2 )—N—ZZ ,
then if
k
N = Z Pij
j:
then
i —1\
MN) =[P, -2F +1v1(N-Pi )
o' Kk
k-1
i -1 i.-1
_ k _ o
—Pik-z +Z(Pi_ 2 )
=

1l
N
.fd
1

S
-
[neY
N
I
Z
]
LM~
Do
)
'—l

i=1

which evidently proves the theorem by mathematical induction. This completes

the proof of Theorem 4.
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5. SOME GENERAL REMARKS
The foregoing theorems are applicable to a large class of sequences.

The restriction

n
Pn—l-l =1 +Z Pi
-1

in particular, fits vy = 0 and w = 1, while

u = ku +u n
n+2 n-+1 n

The Pell sequence is the special case when k = 2.
Theoremb5. If Py =1, Py = k, and Pn+2 = kPn+1 +Pn n=1, then

It is true that, if Sn =P+ Pytoeor P, then

Pn+2 * Pn+1 - PZ - Pl * Sn y k(Pn+1 - Pyt Sn) * Sn

From P .o - kPn+1 = Pn and Py, - kP; = 0, we assert

P, =kS -P +P =1+8 +k-2P +kS .

Since k = 2, the proof would be complete by induction provided it holds for

n = 1, which one sees as follows:

1
P2=k21+EP1=2
i=1

This completes the proof of Theorem 5.
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Another large family of sequences is given by Py =1, Py =1 and

Pn+2 = Pn+1 + kPn for n= 0, k= 2, Itis not difficult to establish
Theorem 6. If Py =1, Py = k+1, and, for n= 0,

Pn+2 - 1)n+1 * kPn ’

then
n
Py = 1+ P .
i=1

Proof. We proceed by induction. Py =1 and Py = k+1, thus Py =1

+1 for k= 2. Now assume

m-1
=
P_= 1+ > P,
i=1
for m = 2, 3, ---, n, then
P1r1+1 = Pn * kPn—l - Pn * Pn—l * - 1)Pn—l
n-2
=p +P  + |1+ P |+ -2P
i=
>

n
1+ P+ k-2P .
i=1

Clearly

n
P.,=1 +Z P,
i=1

for k= 2, n= 1. This concludes the proof of Theorem 6.
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We add a couple of more sequences to show we haven't captured them all.

Let Pn = an, (Fn is the nth Fibonaceci number.) Then, since

Fo # Fy et Fyp 1 = Fonia =~ Foprg

go that here, too,

n
Pm121+§:%°
=1

So does P_ = n= 1,
n

F2n—1’

6. A FINAL CONJECTURE

Conjecture. Let H; and H, be distinct positive integers, sequence H,
generated by H ,, =H ,, +H n=1, then condition &) yields R(n) such
that R(Hn) is independent of the choice of H;y and H,.
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