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As a result of Theorem 9 we have the following theorem, which may be
called a Non-Four-Square Theorem.

Theorem 10. There does not exist a finite number n such that every

positive integer canbe representedas a sum of at most n Fibonaccisquares.

6. VALUESOF m SUCH THAT Rk) # m

Using Lemma 7 and mathematical induction, it is possible to prove
Rk) # 5, Rk) # 7, Rk) # 13

for any positive integer k. It is suggested that there are an infinite number
of integers m such that R(k) # m for any positive integer k.

Further expansion of these ideas is contained in [3].
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n
N = Z o Fk )
2
where 0 = Y =1 and if Yi1 = 0, then o = 1.

Zeckendorf's theorem provides the representation of N interms of the
minimum number of distinct Fibonacci numberg, and Brown's theorem pro-

vides the representation of N in terms of the maximum number of distinct
Fibonacei numbers.
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