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1. COMPLETENESS 

If elements of a sequence can be selected9 with each element being 
selected at most once? such that their sum is a given integer, then this inte-
ger is said to have a representation with respect to the sequence,, A sequence 
of positive integers is complete if and only if every positive integer has at 
least one representation with respect to the sequence 

Consider the sequence of Fibonacci squares: 

1, 1, 4, 9, 25, 64, • • • . 

Clearly this sequence is not complete as there are no representations for 3, 
7, 8, 12, and infinitely many other integers* Let us now consider using 
two copies of the sequence of Fibonacci squares. Consider the sequence 

1, 1, 1, 1, 4, 4, 9, 9, 25, 25, 64, 64, •• • . 

A few simple calculations will lead one to suspect that we now have a com-
plete sequence. This can be proved using the following theorem given by 
Brown [1]. 

Theorem 1. Let {a. } be a non-decreasing sequence of positive inte-
gers with at = 1. If 

n 

vi * 1 + E\ 
k=l 

then the sequence { a, } is complete. 
* Student, now in El Cajon, California! 
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Let us now define our sequence so that the notation will be s i m i l a r to 

that used in Theo rem 1. Let 

*2k-l F k J a 2 k F k 

Then we have 

2m m 

Y V = 2 V F ? = 2F F (1 {-a k Z—4 k m m+1 
k=l k=l 

2 m - 1 2m-2 
a. + F 2 = 2F - F + F 2 = F k m m - 1 m m 2m 

k=l k=l 

Theo rem 2. The sequence of two of each of the Fibonacci squa re s i s 

complete . 

Proof. Let n be even with n = 2m. Then we mus t show that 

o r that 

2m 
a2m+l " X + E ak 

k=l 

F 2 ^ < 1 + 2F F ^ 
m+1 m m+1 

F o r m ^ 1, 

F < F 
m - 1 m 

F - + F < 2F m - 1 m m 

F ^ ^ 2F m+1 m 
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F2 ^ 2F F (1 
m+1 m m+1 

F2 , ^ 1 + 2F F _,- . m+1 m m+1 

The case for n odd is handled In a similar manner to complete the proof. 
Theorem 3, Exactly one of the first six elements of the sequence {a, } 

can be deleted without loss of completeness. 
This theorem is proved by showing that If one F2 Is deleted^ with 

n — 4, then there is no representation for the Integer F2 - - 1. Further3 

one shows that if any two of the first six elements are deleted., then com-
pleteness Is again los t The proof Is completed by showing that if. any one of 
the first six elements is deleted., It is still possible to find enough represen-
tations to establish a foundation for mathematical Induction. 

Let 

2B BASIC LEMMAS 

P(x) = [ J (1 + x*j) = ]T R(k) xk , 
j=l k=0 

2n 2 F n F n+l 
P2n(x) =J7 ( l H " X a j ) = 2 R2n(k)xk 

j=l k=Q 

2n-l F2n 
P2n-1« =TT ( 1 + X a j ) = 2 R 2n- l ( k ) x k 

j=l k=Q 

where a. Is an element from our sequence. Then R(k) Is the number of 
representations of k as a sum of Fibonacci squares* Paralleling the method 
used by Klarner [2] we can prove the following lemmas. 

Lemma 1. 

(a) RQ (k) = R„ (2F F M - k), 0 < k < 2F F :1 
2n 2n n n+1 " n n+1 
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(b) R^^k) = B ^ f f ^ - k), 0 ^ k ^ F2n . 

Lemma 29 

(a) K2n+1(k) = R2n(k)5 0 ^ k ^ F ^ + 1 - 1 

<» R2n+l(k> = R 2 n ^ + R2n<k " F U > • Fn+1 * k * 2 F n F n + l 

(c) R0 . (k) = R0 (k - F2 ), 2 F F ± 1 + l < k ^ F 0 ± 0 , 
2n+l 2n n+1 n n+1 2n+2 

Lemma 3. 

( a ) R 2n ( k ) = R 2n- l< k ) ' ° * k * F n ~ X 

<b> R 2 n < k > = R 2 n - l ( k > + R2n-l<k " F n> ' F n S k £ F2n 

(c) RQ (k) = R0 ,(k - F2 ), F 0 + 1 ^ k ^ 2F F ± 1 . 
' 2n 2n-l n 2n n n+1 

Lemma 4. 

(a) R2n(k) = R(k)5 0 < k ^ F ^ + 1 - 1 

(b) R0 (k) = R(2F F ,- - k), F 0 + 1 < k < 2F F ± 1 . 
' 2n n n+1 ' 2n n n+1 

Lemma 5. 

(a) R2n+1(k) = R(k), 0 - k * F^+1 - 1 

(b) R2n+1(k) = R(2FnFn + 1 -k) + R(k - F^+ 1) , n * 2 , 

Fn+1 a k S 2 F n F n + l 

(c) R „ , , ( k ) = R ( F 0 l 0 - k), 2F F ^ + 1 2 k < p 
' 2n+l 2n+2 " n n+1 2n+2 

Lemma 6. 
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R ( F n F n + l " k ) = R ( F n F n + l + k ) ' n * 2 ' ° s k S F
a - lVl ~ X • 

L e m m a 7. F o r n ^ 3 , 

(a) E(k) = 2R(k - F 2 ) + R(2F F - - k) , F 2 ^ k ^ 2F F , 
n n n - 1 n n n - 1 

(b) R(k) = 2R(k - F 2 ) , 2F F - + 1 < k < 2F 2 - 1 ^ N n n n - 1 n 

(c) R(k) = R(2F F ^ - k) , 2F 2 < k < F 2
 t 1 - 1 . w N N n n+1 n n+1 

L e m m a ? can now be used to prove many rep resen ta t ion t heo rems s u g -

gested by a table of values for R(k), with 0 < k < 25,000. 

3. REPRESENTATION THEOREMS 

T h e o r e m 4. 

R(F F ^ ) = 2R{F - F ) , n > 3 . 
N n n+1 n -1 n 

Proof, F o r n > 3, 

2F F , + 1 < F F ^ < 2F 2 - 1 . 
n n - 1 n n+1 n 

Using L e m m a 7(b), we have 

R(F F ,- ) = 2R(F F . - F 2 ) 
N n n+1 N n n+1 n 

= 2R(F \F ^ - F 1 ) v nL n+1 nJ 

= 2R(F F - ) . N n n - 1 

T h e o r e m 5. 

R(F F ^ ) = 3.211"1 . 
N n n+1 

Proof. F r o m the table of va lues we have 
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n = 1: R ( F 1 F 2 ) = 3 = 3-2° 

n = 2: R ( F 2 F 3 ) = 6 = 3-21 

n = 3: R ( F 3 F 4 ) = 12 = 3-22 

which gives us a ba s i s for induction. Now a s s u m e the s ta tement holds for 
n = k. Then 

R ( F k W = 3-2k_1 • 

By Theo rem 4, 

R ( F k + i W = ^ k W = 2'3-2k"1 = 3'2k-

We have shown that if the s ta tement i s t rue for n = k, then it i s a lso t rue 

for n = k + 1. The re fo re , by induction, the proof i s complete . 

In a thes i s on this subject forty-four t heo rems such a s t heo rems four 

and give w e r e proved and another nine w e r e suggested. 

4. MAXIMUM AND MINIMUM VALUES OF R(k) 

Since by T h e o r e m 5, 

R(F F _,, ) = 3 - 2 n _ 1 , n n+1 J 

we see that R(k) i n c r e a s e s without bound. However, max imum and min imum 

values of R(k) can be found in each in terval 

F 2 < k < F2
 t 1 - 1 . n n+1 

T h e o r e m 6. F o r 

F 2 < k < F 2 ,- - 1 , 
n n+1 

the max imum value of R (k) i s R (F F , J , 
n n+1 
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This theo rem is proved by induction. 
T h e o r e m 7. F o r 

109 

F 2 < k < F 2
 (1 - 1 , n n+1 

the min imum value of R(k) i s R(k) = 3, where 

k = 2 2i 
i=l 

F 2 < k < F 2 - 1 
*2n K *2n+l x ' 

k = 2 V ^ F 2 , F 2 < k < F 2 

* JLJ r 2i+l ? * 2n+l K * 2 i= l 
2n+2 

By inspect ing the table we see that th ree i s the min imum value of R (k) 

for all k included in the table. L e m m a 7 a s s u r e s us that no l a t e r values of 

R(k) will be l e s s than th ree . Induction i s used to show that R(k) = 3 a s 

specified above. 

5. SIMPLE REPRESENTATIONS 

A s imple rep resen ta t ion i s a represen ta t ion in which each Fibonacci 

square i s used a t mos t once. Since F 2 = F 2 = 1 we will allow two ones to 

be included in a s imple represen ta t ion . By d is t inc t s imple r ep resen ta t ions 

we mean r ep resen ta t ions whose e lements a r e not identical . 

Ri - Ff + 

i=l 

and 

R? = F | 2>k 
i= l 

k. 
i 

(k. 3) 



110 REPRESENTATIONS OF INTEGERS [.Jan, 

a r e taken to be the same s imple represen ta t ion since when the r e p r e s e n t a -
2 2 

t ions a r e actually wr i t ten out we cannot dist inguish between Ft and F 2 . 

Theo rem 8, An in teger has a t mos t one s imple represen ta t ion . 

Proof. Let 

I = F? + F? + . . . + F? 
Ji 32 Jn 

be a s imple represen ta t ion for I. 

v1 
E F? = F . - F . ^ F? 

1 3 - 1 J 3 
. - Jn Jn Jr. 
1=1 

Hence F? m u s t be used in a s imple represen ta t ion for I. S imi lar a rgu-

men t s show that each F?. m u s t also be used. 
3i 

Theorem 9. Eve ry represen ta t ion of F F - i s s imple . 

Proof. Recal l that 

1 + 1 + 4 + 9 + — + F 2 = F F ,-
n n n+1 

(i) Using our sequence the re a r e 1 9 I ways to se lec t the two ones and two ways 

to se lec t each succeeding summand. The re fo re , the number of s imple r e p -

resen ta t ions i s 

*) - 2 n - 2 = 6-211-1 = 3-211-1 

F r o m Theo rem 5, we have 

R(F F ^ ) = 3-211"1 . n n+1 

Note that we have 3s 2 s imple r ep resen ta t ions and a total of 3-2 " r e p -
resen ta t ions for F F - . Hence, eve ry represen ta t ion for F F - i s 
s imple . 
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A s a result of Theorem 9 we have the following theorem, which may be 
called a Non-Four-Square Theorem. 

Theorem 10. There does not exist a finite number n such that every 
positive integer can be represented as a sum of at most n Fibonacci squares. 

69 VALUES OF m SUCH THAT R(k) f m 

Using Lemma 7 and mathematical induction, it is possible to prove 

R(k) f 5, E(k) ± 7, R(k) f 13 

for any positive integer k. It is suggested that there are an infinite number 
of integers m such that R(k) f- m for any positive integer k. 

Further expansion of these ideas is contained in [3], 
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[Continued from page 102. ] 
n 

2 

where 0 ^ a. ^ 1 and if a ,- = 0, then a, - 1. k k+1 k 
Zeckendorfs theorem provides the representation of N in terms of the 

minimum number of distinct Fibonacci numbers^ and Brownfs theorem pro-
vides the representation of N in terms of the maximum number of distinct 
Fibonacci numbers. 


