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1. COMPLETENESS

If elements of a sequence can be selected, with each element being
selected at most once, such that their sum is a given integer, then this inte-
ger is said to have a representation with respect to the sequence. A sequence
of positive integers is complete if and only if every positive integer has at
least one representation with respect to the sequence.

Consider the sequence of Fibonacci squares:
1,1, 4,9, 25, 64, ---

Clearly this sequence is not complete as there are no representations for 3,
7, 8, 12, and infinitely many other integers. Let us now consider using

two copies of the sequence of Fibonacci squares. Consider the sequence
1,1,1,1, 4, 4, 9, 9, 25, 25, 64, 64, ---

A few simple calculations will lead one to suspect that we now have a com-
plete sequence. This can be proved using the following theorem given by
Brown [1].

Theorem 1. Let {ak} be a non-decreasing sequence of positive inte-

gers with a4 = 1. If

n
TN

An+l =1+ Lak ’
k=1

then the sequence {ak} is complete.
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Let us now define our sequence so that the notation will be similar to
that used in Theorem 1. Let

= 2 = 2
qok-1 = i Bk~ Tk
Then we have
2m m
3
= 2 - ;
Do T 2T S A,
k=1 k=1
2m-1 2m-2
= o 2 = 2 =
Z A ZJ A ¥ Fm 2Fm—l Fm * Fm FZm
k=1 k=1
Theorem 2. The sequence of two of each of the Fibonacci squares is
complete.

Proof. Let n be even with n = 2m. Then we must show that

2m
a2m+1 =1+ Z A
k=1
or that
2
Fm+1 =1+ 2F]rnFmﬂ ’
For m =1,
Fm—l = Fm
<
Fm—l + FIn = ZFm
F = 2F
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2 =
Fm 41 2Fm Fm "l

2 =
FZ . = 1+2F F_ .

The case for n odd is handled in a similar manner to complete the proof.

Theorem 3. Exactly one of the first six elements of the sequence {ak}
can be deleted without loss of completeness.

This theorem is proved by showing that if one Ffl is deleted, with
n =4, then there is no representation for the integer F; 41 1. Further,
one shows that if any two of the first six elements are deleted, then com-
pleteness is again lost. The proof is completed by showing that if any one of
the first six elements is deleted, it is still possible to find enough represen-

tations to establish a foundation for mathematical induction.

2. BASIC LEMMAS

Let
[=e] 0
a. k
P(x) =l [+ =Y, RO <,
=1 k=0
2n X 2F Fra
= j = k
P, () I I(l +x ) 2. Ry (0x°,
j:l k:O
2n-1 FZn
aj k
P, & 1+x9) ZRZn_l(k)x )
=1 k=0

where a. is an element from our sequence. Then R(k) is the number of
representations of k as a sum of Fibonacci squares. Paralleling the method
used by Klarner [2] we can prove the following lemmas.

Lemma 1.

(a) RZn(k) = R2n(2FnF - k), 0= k= 2F F

n+1l n n+l
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(c)

(a)

(b)

{c)

()

(c)
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k) = R (F, - k), 0 =k =F

RZn—l 2n-1"" 2n Zn °’
Lemma 2,
= 2 -
Rons1®) = Bgy 0, 0=k ="Fpy-t

= . _ 2 2 <
Rzn_l_l(k) Rzn(k) + Rzn(k Fn+1) s F =k 2F F

(k)=RZn(k—F2 ), 2F F +1 =k =F

R21'1+1 n+1 n+1 2n+2 °
Lemma 3.
— 2
R, ® = R, &), 0=k =TF -1
_ 2
Ron) = Rop 1 ® + Ryp & - Fyp)s Fp =k =Ty
Rzn(k) = RZn 1(k - Fn)’ an +1 =k ZFnFn+1 .
Lemma 4.
= < < 2 _
R2n(k) Rk), 0 =k = Fn+1 1

= < R
2n n n+l

Lemma 5.
= 2 -
R2n +1(k) Rk), 0 =k = ]F‘J[1 41 1
= _ _ T2 >
R2‘n+1(k) R(anFn—:Ll k) + Rk Fn+1)’ n 2,
2
Fn+1 =k = 2FnFn+1

- : = =
oo - K 2F Fp vl =k =Ty 0

Lemma 6.
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R(F F o,y -K =REF 4+, n=2 0=<ksF F  -1.

n+l

Lemma 7. For n = 3,

= _ T2 _ 2
(@) Rk) 2Rk Fn) + R(ZFnFn_1 k), Fn =k = ZFnFn—l
= —- 2 2 -
(b) R(k) 2R(k Fn), 2FnFn_1 +1 =k = ZFI1 1
= - 2 2 -
(c) R() = RFF ., -k, 2F =ks=F -1,

Lemma 7 can now be used to prove many representation theorems sug-

gested by a table of values for R(k), with 0 = k = 25,000,

3. REPRESENTATION THEOREMS

Theorem 4.

v
w

R(F,F 1) = 2R(F, |F ), n

n+1 n

Proof. For n = 3,

Using Lemma 7(b), we have

= n - 2
R(FnFn+l) ZR(I‘n:E‘mJrl Fn)
= 2R(F [F ., - F/])
= ZR(FnFn_l) .
Theorem 5.
_ n-1
R(FnFnﬂ) = 32

Proof. From the table of values we have
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1]

n=1 R(FTF) =3 =320

3.21

|
(=2}
Il

n =2 R(F;Fs)
n =3 R(F3F,) = 12 = 3.22

which gives us a basis for induction. Now assume the statement holds for
n = k. Then

ookl
R(F F,, ) = 32 " .

By Theorem 4,

k-1 k

R(Fk+1Fk+2) = ZR(FkF ) = 232 = 32

k+1
We have shown that if the statement is true for n = k, then it is also true
for n = k +1. Therefore, by induction, the proof is complete.

In a thesis on this subject forty-four theorems such as theorems four

and give were proved and another nine were suggested.

4. MAXIMUM AND MINIMUM VALUES OF R(k)

Since by Theorem 5,

n-1

R(FnF ) = 32 ,

n+1

we see that R(k) increases without bound. However, maximum and minimum
values of R{(k) can be found in each interval

2 2 -
]E‘n =k = Frl 1 1
Theorem 6. For
2 << 2 -
F« =k F 41 1,

).

the maximum value of R(k) is R(FnFn 41
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This theorem is proved by induction.

Theorem 7. For

2 2
Fn =k = Fn+1 -1,
the minimum value of R(k) is R(k) = 3, where
n
= 2 2 2
k 21+ZF21’ Fon Sk =T51 -1,
i=1
n
= 2 2 2
k=23 Fh 0, Fh, Sk =TFL -1
i=1

By inspecting the table we see that three is the minimum value of R(k)
for all k included in the table. Lemma 7 assures us that no later values of
R(k) will be less than three. Induction is used to show that R(k) = 3 as
specified above.

5. SIMPLE REPRESENTATIONS

A simple representation is a representation in which each Fibonacci

square is used at most once. Since F? = FZ = 1 we will allow two ones to
be included in a simple representation. By distinct simple representations

we mean representations whose elements are not identical.

n

R, = Ff + ) F}
) i
i=1

and
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are taken to be the same simple representation since when the representa-
tions are actually written out we cannot distinguish between F% and Fg .
Theorem 8. An integer has at most one simple representation.
Proof. Let

I =7 +F +...+F?
) J2 Jn

be a simple representation for L

ip?

> ¥ =F _F < F <1.
i ity iy
i=1

Hence szn must be used in a simple representation for I. Similar argu-

ments show that each F%i must also be used.
Theorem 9. Every representation of FnFn 41 is simple.
Proof. Recall that

e 0 o 2:
1+1+4+9 + +Fn FnFn+l'

Using our sequence there are g ways to select the two ones and two ways

to select each succeeding summand. Therefore, the number of simple rep-

resentations is

From Theorem 5, we have

_ a.oh-1
R(FnFn+1) = 32 .

Note that we have 39071 simple representations and a total of 3.2071 rep-

resentations for FnFn 1 Hence, every representation for FnF is

n+l
simple.
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As a result of Theorem 9 we have the following theorem, which may be
called a Non-Four-Square Theorem.

Theorem 10. There does not exist a finite number n such that every

positive integer canbe representedas a sum of at most n Fibonaccisquares.

6. VALUESOF m SUCH THAT Rk) # m

Using Lemma 7 and mathematical induction, it is possible to prove
Rk) # 5, Rk) # 7, Rk) # 13

for any positive integer k. It is suggested that there are an infinite number
of integers m such that R(k) # m for any positive integer k.

Further expansion of these ideas is contained in [3].
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B e o o
[Continued from page 102. ]
n
N = Z o Fk )
2
where 0 = Y =1 and if Yi1 = 0, then o = 1.

Zeckendorf's theorem provides the representation of N interms of the
minimum number of distinct Fibonacci numberg, and Brown's theorem pro-

vides the representation of N in terms of the maximum number of distinct
Fibonacei numbers.



