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In preparing tables of residues for indices of primitive roots the follow-
ing situation was noted for the modulus 109. The primitive root5 11, has 
residues as shown corresponding to indices as given on the borders of the 
table. Thus the residue of 11 to the index 82 is 36. 
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It is noteworthy from the early entries of the table that each succeeding entry 
is the sum of the two that precede it. This relation can be verified for the 
entire table if the sums are taken modulo 109. Clearly this is an unusual sit-
uation for a table of this kind. The questions that come to mind are: Is this 
something very extraordinary? Under what conditions does a table of this 
type have this Fibonacci property? 

Since the entries in the table are residues of successive powers of some 

quantity x, the conditions that must be fulfilled are two: (1) x must satisfy 

the relation 
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n+1 n , n-1 , . x 

x = x + x (mod p) 

or what is equivalent presuming that (x,p) = 1 as must be the case for a 
primitive root5 

x2 s x + 1 (mod p) 

(2) x must be a primitive root modulo p. 
The first condition leads to the congruence 

(2x - I)2 = 5 (mod p) 

so that a necessary condition is that 5 be a quadratic residue of p. This 
means that p is a prime of the form lOn ± 1. The solutions of this quad-
ratic congruence for primes of this type fulfill the first requirement. It is 
necessary, however, to determine whether they are primitive roots, 

The results of this investigation for primes of the required form up to 
300 are shown in the table below. 
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The conclusion would seem to be that this phenomenon is not particu-
larly uncommon and that there is a straightforward method of determining 
additional instances of this type. 

[Continued from page 156., ] 
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