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ABSTKACT 

The Fibonacci search technique for maximizing a unimodal function of 
one real variable is generalized to the case of a given first evaluation. This 
technique is then employed to determine the optimal sequential search tech-
nique for the maximization of a concave function. 

1. INTRODUCTION 

A real function f: [a,b] -* R, where a < b is called 

(1.1) unimodal , 

if there are xs x E [ a , b ] such that f is increasing for x ^ x and non-
increasing for x ^ _x5 decreasing for x ^ x and nondecreasing for x ^ x 
(Fig. 1). 

o b 

Fig. 1 Example of a Unimodal Function 

(1.2) If f is unimodals then the interval [ x , x ] consists of all maxima of f. 
Proof, f is constant in [x9x ], since it is by definition nonincreasing 

for x ^ x as well as nondecreasing for x ^ x. If x < x , then f(x) < f(x) 
as f increases in [ a , x ] . If x > x , then f(x) < f(x) as f decreases in 
[ x , b ] . 

The definition of unimodality is chosen so as to guarantee that 

113 
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(1.3) Whenever a unimodal function f has been evaluated for two arguments 
xt and x2 with a ^ xt < x2 ^ b, then some maximum of f must lie in 
[x i ,b ] if f(xi) ^ f(x2) and in [a,x2] if f(x^ ^ f(x2) 

Proof. If f(xi) ^ f (x 2 ) , then xA and x2 cannot be both in that portion 
of the interval [a,b] in which the function decreases. In other words, x 
cannot lie to the left of x1# Thus x E [x 4 ,b ] , and x is a maximum of f by 
(1.2). Similarly, if f(xt) ^=f(x2), then x E [a,x2] . 

As the restriction of a unimodal function to a closed subinterval of [a ,b] 
is again unimodal, this argument can be repeated. Hence, a sequential search 
based on (1.3) will successively narrow down the interval in which a maximum. 
of f is known to lie. Such an interval is called the 

(1.4) Interval of Uncertainty. 

Kiefer [3] has asked the question of optimally conducting this search,, and 
answered it by developing his well known Fibonacci search. 

The Fibonacci search gives a choice of two arguments for which to make 
the first evaluation. But what happens if by mistake or for some other reason 
the first evaluation took place at some argument other than the two optimal 
ones? How does one optimally proceed from there? 

In this paper, we shall therefore ask and answer the question for an op-
timal sequential searchplan with given arbitrary first evaluation. The result-
ing technique is applied to improving on Fibonacci search for functions known 
to be concave. The technique may also be of interest in the context of stabil-
ity of Fibonacci search in the presence of round-off e r rors as studied by 
Overholt [6] and Boothroydt [l] (see also Kovalik and Osborne [4]). 

2. LENGTH OF UNCERTAINTY 

In what follows we assume that a = 0 and b = 1. Furthermore, we 
shall permit zero distances between two arguments of evaluation, interpret-
ing each such occurrence as evaluating the (not necessarily unique or finite) 
derivative of the function f. A more careful analysis would take into account 
the smallest justifiable distance € between arguments (Kiefer [ 3 ], Oliver 
and Wilde [5]). 
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By 

Lk(x), 0 < x < l , 

we denote the length to which the interval of uncertainty (1.4) can surely be 
replaced by k evaluations in addition to a first one at x. Extending a recur-
sive argument due to Johnson [ 2 ] , we obtain 

(2.1) Lk(x) = min |Mk(x), MR(1 - x)} , 

where 

M. (x) : = min max ) 
x<y<l | 

(1 - x)Lk .(HI). M f 
Proof. Let y denote the first function argument over which we have 

control. If x ^ y ^ 1, then the two possible intervals of uncertainty are 
[ 0 , y ] and [ x , l ] . The former contains the point of evaluation x. The best 
upper bound for the length of the interval of uncertainty after the remaining 
k - 1 evaluations is given by 

(2.2) yLk 4) 
Similarly, y is the evaluation point in [ x , l ] , leading to the best upper 
bound 

(2.3) o (1 - x)Lk *(Hi) 
Whether [0,y] or [ x , l ] is the first interval of uncertainty depends on the 
result of the evaluation at y: if f(y) ^ f(x), then [ 0 , y ] , if f(y) > f(x), 
then [ x , l ] . Hence the maximum Mk(x) of the two expressions (2.2) and 
(2.3) is the best result achievable if y is selected between x and 1. The 
expression 
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Nk(x) : = ^ m a x j x L ^ f ) . (1 - ^ ( f f - f ) } 

analogously describes the best result achievable if y is between 0 and x. 
Since we control the choice of y, we can choose the smaller one of these 
two expressions; and this gives 

Lk(x) = min {Mk(x), Nk(x)} 

Introducing for 0 ^ x ^ y < 1 , 

Sk(x,y) : = max f-^-ifrH^^fj. 
we have 

M, (x) = min S,(x,y), N, (x) = min S, (y,x) . 
x^y^ l O^y^x 

Now for 0 < x ^ y ^ 1 , 

(2.4) sk<x>y) = s k ( 1 - y. i - x ) . 

Therefore, N. (x) = M-(l - x), and (2.1) is proved. 
At the beginning, the interval of uncertainty is the entire interval in. 

which the function is to be examined. A single function evaluation at any 
point x does not change this situation. Hence 

L0(x) = 1 . 

We then have 

Mj(x) = min max {l - x,y} = max {l - x , x } = M^l - x) 
x<y<l 

Hence 
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(2.5) 

WITH ARBITRARY FIRST EVALUATION 

Lt(x) = max {1 - x,x} = J 1 - x for 0 < x < ^ 
x for 4; < x ^ 1 

F o r k ^ 2, we c la im (Fig* 2): 

(2,6) 

1 - x 
F k + 1 

for 0 < x < 
"k+2 

Lk(x) = | 

x - k 
for •= 

F k F k+2 

V 5 f°r 2 * X 
Lk+1 
?k+2 

x . k+1 _ _ -
; for = — < x < 1 , "k+1 "k+2 

where F4 = 1 , F 2 = 1, F 3 = 2, F 4 = 35 

Fibonacci n u m b e r s . 
" • • F k = F k - 2 + F k - 1 a r e 

U(x)4 

Fig. 2 Lk(x) for k = 0, • • • , 4 

Proof. The case k = 2 requires special treatment From (2.5), 
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y - x for (x,y) £ At : = jo < | < J } 

x for (x,y) G A2 : = j | s 5 < l j 4) 
(1 - x)Lt N 

y - x for (x,y) e Bt : = 0 < 1 — | < | 

1 - y for (x,y) G B2 : = \ ^ \—\ 

We are now able to determine S2(x,y) in each of the four regions A. Pi B. 
separately: 

Aj fl Bj : S2(x,y) = max jy - x, y - x} = y - x . 

At H B2 : S2(x,y) = max jy - x, 1 - y} = l - y . 

A2 fl Bj : S2(x,y) = x by (2.4) and (1 - y, 1 - x) G At H B2 . 

A2 Pi B2 : S2(x,y) = maxjx, 1 - yf = ^ ^ ^ y ^ 1 I x " 

The sets A, and B. are represented in Fig. 3. They are triangles formed 
by the line segments marked A. and B., respectively, and the correspond-
ing opposite corner of the square. The feathered lines are the minimum lines 
with respect to constant values of x, i.e., if proceeding vertically the inter-
section with the feathered lines marks a minimum. The function M,(x) is 
defined to be the value of this minimum. Hence 

L^iE if o < x < i 
M2(x) = [ 2 3 

If J * x 

By (2.1) we then have finally 
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y l 
1 i 

Bi 

B2 

01 

Ai 

y-x 

, ' i -y 

/ X 
I / 

1 / 

y 

A2 
v «<X 

si -"" X 
V -^ X 

v -̂  X y ^ X 

X 

L2(x) = 

Fig. 3 S2(x,y) 

4 " * if 0 ^ x ^ \ 
x l f 3 - X - 2 

1 - x if — < x 

x if -o — x 

in accordance with (2.6). 
The case k ^ 3 is now proved by induction over k. We have 

y L k - ^ ) 

F, 1 
J ^ for (x,y) E At : = 0 < f < ~ ^ ± 

F k y *k+l 

k»l 
for (x,y) E A2 : k-1 < x <= 1. 

V i y 

• 5 ^ - 5 for ( x , y ) E A 3 : = | * £ < , 
F k - 1 Z y Ak+1 

x 
F, 

for (x5y)E A4 : = = r ^ - ^ f ^ 1 
^k+1 y 
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(1 - x)L, fc.^) 

I^JL f0r (X,y) £ B l : = 0 < ±if-Z < 1 - Y < 1 M 
k+1 

— ^ for (x v) G Bo • = - ^ < 1 " X < I 
t o r [x,y) t i 5 2 . - _ - 2 

k - 1 k+1 

L : ^ for (x,y) G B j : = | ^. ^-=-J 
k - 1 

-£-?• for (x,y) £ B 4 : = _ _ - ^ 
k * k + l 

k+1 

^ * * 1 

We de te rmine S, (x,y) in all. regions A. D B. with i ^ j . F o r the r ema in -
K i j 

ing r eg ions , we use (2.4). 

Ai H BA : S (x,y) = max P ^ A ^LzJE = iL^JE 

AA H B2 : Sk(x,y) = m a x j ^ — , - p r ^ f =
 F " Y s i n c e (x>y) E B2 gives 

( k k-11 k - 1 

(1 - x ) F k _ x ^ (1 - y ) F k + 1 i and therefore (y - x j F ^ = (1 - x j F ^ 

- (1 - v ) * V i ^ (1 - y ) F . + 1 - (1 - y)F. , = (1 - y)F. . k - 1 k+1 k - 1 

Ax H B3 : Sk(x5y) = max ^ , ^ L ^ = ILlJL 
f k k - 1 ) k - 1 

A4 O B4 : S,(x,y) = max ^ , i ^ - Z = i ^ 

gives 1 - x ^ 2(1 - y) o r y - x ^ 1 - y , 

1 

since (x,y) E B4 

A2 H B2 : Sk(x,y) = m a x . ^ , ^ * _ 1 - y 
k - 1 * k - l k - 1 

max j x , 1 - y , 

A2 0 B3 : S, (x,y) = max T ^ — , ^ — * 
K ( * k - l * k - l ) 

^ s ince (x,y) G A2 
* k - l 

g ives 2x ^ y o r x ^ y - x 
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A2 H B 4 : S,(x,y) = max < ^ — , ^ ™ 1 > = ^ - ^ s ince (x,y) G A2 gives 
f ^ k - 1 *k ) *k 

2x - y < 05 and since (x,y) E B4 gives -xF , + y F . + 1 ^ F, 1 . 

Indeed? multiplying the f o r m e r inequality by F, and adding it to the 

l a t t e r gives xFf e + y F k _ 1 ^ F ^ . 

A3 H B 3 : S (x,y) = m a x | ^ - ^ , ^LZJLI = Zf-^ , 
K r k - 1 * k - l * k - l 

A 3 O B 4 : S. (x,y) = max y , —jr-^l = --jr-2- s i n c e ^ x ' ^ E B4 § i v e s 

( k - 1 k J k 
(1 - x ) F k < (1 - y ) F k + 1 , and therefore (y - x ) F k = (1 - x ) F k -
(1 - y ) F k * (1 - y ) F k + 1 - (1 - y ) F k = (1 - y ) F k - 1 

A4 H B 4 : Sk(x,y) = max j ^ - , ~ y = ^=- max {xs 1 - y} . 
? k k ) k 

The schemat ic r epresen ta t ion of S. (x,y) then i s given by Fig . 4„ T h e r e a r e 

b r eaks along the l ine x = 1 - y in a r e a s A2 D B2 and A4 n B4. The fea the r -

ed l ines a r e again those boundar ies of l inea r i ty regions at which S, d e c r e a s e s 

for fixed x. The absc i s sae of in te rsec t ion points of feathered l ines a r e t h e r e -

fore c r i t i ca l . The f i r s t one of these c r i t i ca l a rguments we denote by v. It 

i s the a b s c i s s a of the in te rsec t ion point of the l ine 

1 x *k+ l 

which s e p a r a t e s B$ from B2 s and the l ine 

(2.8) X - ^ ^ y F k+l 

which separates At from A2. Elimination of y yields 



122 FIBONACCI SEARCH [Feb. 

A2 A 3 

v i/3 w y2 

Fig. 4 S. (x,y) and Critical Arguments 

F * k - l 
F k + 1 + F k - 1 

The next critical argument clearly has the value 1/3. The third one, which 

we call w, is the intersection of the line 

(2.9) 1 - y = _ 
1 - x F k+1 

which separates B3 from B4, and the line 

F, 
(2.10) y F k+l 

which separates A3 and A4. Elimination of y yields 

k+2 
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The l a s t c r i t i ca l a rgument finally has the value 1/2. 
F o r 0 < x < v the v a l u e s of S, (x,y) at the in te rsec t ion of the v e r t i -

cal through x with the two feathered l ines (2.7) and (2.9) a r e potential m i n i -
m a . The equations of these l ines can be rewr i t t en as 

and 
Y F F ~~ F 
* k - l *k+ l *k *k+ l 

As these t e r m s also r e p r e s e n t the value of S, (x ,y) , we have 

1 - x 
M. (X; 

k W F k + i 

for 0 < x < v. 

F o r v ^ x < 1/3 local ly min imal points a r e to be found on line (2.9) 

and in the a r e a where S, (x,y) a s s u m e s the value x / F . - . Now x > v 

gives x F k + 1 > (1 - x ) F k _ 1 o r 

F F 
* k - l k+1 

Thus 

Mk(x) = ± p £ 

for v < x < 1/3. 
F o r 1/3 < x < w only the l ine (2.9) i s in te res t ing , and Mk(x) st i l l 

takes the value 

1 - x 
F k + 1 " 

F o r w ^ x ^ 1/2 and beyond the min imum is a s sumed within the e n -

t i re l ine segments which mee t s the a r e a in which S. (x,y) = x / F k . 
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Thus , finally 

F 
1 " x for 0 < x < k 

(2.11) Mk(x) = 
F k + 1 F k+2 

^ - for = < x < 1 
•*k k+2 

and (2.6) follows immedia te ly from (2.1). 

Note also that (2.11) impl ies 

(2.12) Lk(x) 
Mk(x) for 0 < x < | 

M k ( l - x) for | < x < 1 

3. SEARCH STRATEGY 

In the previous sect ion, y?e have de te rmined the opt imal length of un-

cer ta in ty L , (x ) , which can be achieved in k evaluat ions in addition to one 

evaluation at x EE [ 0 , 1 ] , We have yet to desc r ibe a s ea rch s t r a t egy which 

r e a l i z e s L, (x). This amounts to specifying the a rgument y of the f i r s t 

evaluation in addition to x. In view of (2.12), this r educes to de termining y 

such that M, (x) = S, (x,y) f o r g i v e n x between 0 and 1/2, a task which 

has been per formed a l ready while calculat ing M, (x). 

If o ^ x ^ v, then there a r e two optimal solutions y, s ince 

S, (x,y) = 1 

k , J F 
* k + l 

along both feathered l ines in Fig. 4. This non-uniqueness i s not su rpr i s ing . 
Indeed, if x = 0, then the evaluation at this a rgument does not contr ibute at 
all towards nar rowing the in terval of uncer ta in ty , and the optimal continuation 

i s just plain Fibonacci with one evaluation wasted. And in this case there a r e 

two opi 
points 

s t two optimal a rgumen t s , namely the f i r s t and second ( k - 1 ) o r d e r Fibonacci 
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F. - F. k-1 k 
F F 

k+1 *k+l 

F 
(3.1) If 0 < x < — -. - - , then any of the two (k - l ) s order Fibonacci 

k+1 V l 
points in the interval [x , l ] is an optimal evaluation point 

F. . xF. + F. . , k-1 M v k k - 1 
y i = x + - — - (1 - x) = — 

* k+1 * k+1 

F. xF, - + F. 
' k •/- v k - 1 k 

y 2 = X + , ^ _ (1 - X) = • — ~ 
* k+1 * k+1 

In both intervals v < x < 1/3 and 1/3 < x ^ w, the optimal solution 
y is unique. 

F k - i F k 
(3.2) If —-—~^=—— < x ^ •=• then the optimal evaluation point y is the 

* k+1 * k-1 * k - l st first (k - 1) order Fibonacci point of the interval [x, 1 ] . 

Finally, if w ^ x ^ 1/2, then the optimal solutions fill an entire 
interval. 

F 
(3.3) Let = < x ^ >̂. If y0 is such that x is the second (k - 1) or -

*k - l A 

der Fibonacci point in [0, y0 ], then all points in [1 - x,y0] are 
optimal evaluation points. 

The following rule will always yield an optimal solution: 

(3.4) Theorem. An optimal search strategy after an arbitrary first evalua-
tion at x0 E [a,b] is as follows. If c ^ x ^ d are such that [c ,d] con-
stitutes the interval of uncertainty after i additional evaluations, and if x 
is the argument for which the function has been evaluated already, then: 
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(i) If x lies between c and the first (k - i ) order Fibonacci points 
in [c ,d ] , then choose y as the first ( k - i ) order Fibonacci point in 
[ x , d ] . 

(ii) If x lies between the two (k - i ) order Fibonacci points of [c ,d ] , 
then choose y as the symmetric image of x in [ c ,d ] , i. e. , y = c + d - x. 

(iii) If x lies between d and the second of the two (k - i ) order Fib-
onacci points in [c ,d ] , then choose y as the second (k - i) order Fib-
onacci point in [ c , x ] , 

We shall refer to any sequential search strategy in keeping with (3.1, 2, 
3), in particular the rule described in Theorem (3.4), as 

(3.5) Modified Fibonacci Search . 

If the interior of the interval of uncertainty does not contain an argument at 
which the function has been evaluated already, then the selection of the next 
evaluation by modified Fibonacci search will be the same as in standard Fib-
onacci search. 

4. SPIES 

Intervals of uncertainty with nonoptimal evaluation points may be the 
result of the following situation. Suppose in maximizing a function we avail 
ourselves of the services of a "spy.T! This spy operates as follows: every 
time an interval of uncertainty has been based on the results of prior evalua-
tions, he is consulted, and as a result of this consultation, the interval of un-
certainty may sometimes be further reduced (remaining an interval) without 
additional evaluations. One cannot expect, however, that the remaining eval-
uation point (if there is any) is in optimal position within the new interval of 
uncertainty. 

In this case, there is a question whether the additional information 
should be accepted. It is indeed conceivable that reducing the interval of un-
certainty and subsequently continuing from a non-optimal evaluation point 
would in the final analysis lead to a larger interval of uncertainty than ignor-
ing the additional information and doing a straightforward Fibonacci search. 
That this is not so, is essentially the content of the following. 
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(4.1) Theorem. The optimal policy in the presence of an unpredictable spy is 
to heed his advice and to proceed from the interval of uncertainty so achieved 
by modified Fibonacci search with respect to the remaining evaluation point if 
there is any. 

Proof. Let [c,d] be the interval of uncertainty as determined by the 
previous step of the search, and let [c,d ], c ^ c ^ d ^ d, be the interval. 
of uncertainty after consulting the spy. As the spy is unpredictable, there 
may be no further information forthcoming. This is the worst case, since 
even if the spy is providing information, it need not be heeded. Thus all we 
have to show is that we do not worse by proceeding form [ c , d ] than from any 
other interval [c*,d*] with [c ,d] D [c*,d* ] 2 [ c , d ] . 

Now let x be the evaluation point in [c ,d] . Then we distinguish two 
cases, depending on whether x E [c ,d] or not. Suppose x E [ c , d ] , then 
x E [ c* , d* ] . Working on the latter interval, the best we can guarantee in r e -
maining steps is reducing the uncertainty to 

(d* - c*)L J X - C* 
d* - c* 

d* - x - A ^ x - c * for 0 <• F i+1 

X - C* 
F 

d* - x 

X - C* 

•i+1 

d* - c* 

for 

i+2 

x - c* _ 1 
F i + 1 d* " °* 2 

f I < x " c* < i + 1 

F„ 2 d* - c* F i+2 

for "i+1 _ x - c* 
F d* 
*i+2 

( = : I i ) 

(=: h) 

(=: Is) 

^F < 1 (='k) 

For all x such that 

X - C* and 

are both in one of the four intervals I. above, 

(4.2) (d* - c*)L ;{&£) * « " ̂ f f | ) 
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i s immedia te . Of the remain ing twelve c a s e s , we need cons ide r only s ix , a s 

the o the r s follow by symmet ry . Let 

u* : = d* - c* and ii : = d - c . 

— F 
x - c* ,_ T , x - c _ T x - c* ^ i 
—-^— E Ii and — — G I2 : * =£ ^ — 

u u u * i + 2 

impl ies 

# - x >
 F i 

u* F 

Thus 

d * - x > x - c* ^ x - c 
F F F 

X - C* ,_ T , X - C ^ _ T - . U 
u* G- I i and — — - E I3 : x - c > ^ 

gives x - c ^ d - x. Thus 

d* - x > x - c * > x - c > d - x 
F ~ F ~" F "~ F 
r i + l r i i i 

J L ^ E k ^ J L ^ E I4 : F | + 1 * Fi 

Thus 

d* - x ^ x - c * > x - c > x - c 
F ~~ F F ~~ F 

i + 1 i i i + 1 
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— - 3 — E I2 and — — E I3 : x - c > ^ 

gives x - c > d - x „ Thus 

Thus 

impl ies 

Thus 

x - c* ^ x - c ^ d - x 
F F F 

^ E I 2 a n d £_Z^E l 4 : F i * F 

u 

x - c* ._ x - c _ x - c 
F i F i F i + 1 

X — C .— T -« X ~" C ,— TT X ~~ C . 

u u u * i+ 

d* - x < F i - 1 
U * i + l 

d* - x ^ x - c * - ^ x - c 
F i + 1 F i + 1 

The case in which x (£ [c",d] r ema ins to be considered. Suppose x•< 

"c < d. Since we proceed by s tandard Fibonacci in any interval of uncer ta in ty 

not containing x in i t s in te r io r 9 s ta r t ing with [ c , d | is ce r ta in ly be t te r than 

s t a r t ing with [ x , d ] C [ c 9 d ] 9 and we have a l ready seen that [ x , d ] i s be t t e r 

than any in terval between [ c9 d ] and [ x , d] „ 
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A spy is called 

(4.3) almost unpredictable 

if for each subinterval [c* ,d*] of the interval of uncertainty [ c , d ] , which 
results from the evaluation pattern, the spy has the option of reducing it only 
to an interval [c ,d] which contains [c*,d*]. Plainly, we still have 

(4.4) Theorem. The optimal policy in the presence of an almost unpredict-
able spy is to heed his advice and to proceed from the interval of uncertainty 
so achieved by modified Fibonacci search with respect to the remaining eval-
uation point if there is any. 

5. CONCAVE FUNCTIONS 

We shall see that a "spy" is available if the unimodal function to be max-
imized is known to be concave. 

A function f : [a, b] —> R is 

(5.1) concave 

in [a, b] if 

f(Ax + jxy) > Af(x) + |ULf(y) 

holds for all x ,y E [a ,b] , A ,p. > 0 and A + JLL = 1. The function is 

(5.2) strictly concave 

if 

f(Ax + ]ULy) > Af(x) + jLLf(y) 

holds for all x,y,A^L which are as above and satisfy in addition x f y and 
A, jut > 0. We state without proof that 
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(5.3) Every upper semicontinuous concave function on [ a , b ] is unimodal. 

Without the additional hypothesis of upper semicontinuity, (5.3) does not 
hold as there are concave functions without maximum on [ a , b ] . 

Now consider two points 

P. : = (x.,f(x.)) P. : •= (x.,f(x.)), x. < x. , 
i l i j 3 3 i 3 

of the graph 

G(f) : = |(x9f(x)) : x E [a ,b]} . 

and let L.. be the straight line through P. , P.. Concavity implies that the 
graph of f does not lie below L.. in [x . 9 x . ] and not above L.. in the r e -
mainder of the interval [a ,b] . Hence if five points of the graph G(f) , 

P0 : = (x0,f(x0)), - ° , P4 : = (x4,f(x4)) 

with 

x0 < Xi < x2 < x3 < x4 

and 

f(x2) > f(x.)s i = 1, 2, 

are known, then that part of the graph G(f) that lies above [xl9x3] is con-
tained in the union of the two triangles A* and A2 formed by L 0 1 , L I 2 J L 2 3 and 
L12,L235L34, respectively. f(x2) is a lower bound for the maximum value of 
f. Therefore 

(5.4) a maximum of f must lie in the intersection of AjA2 with the horizon-
tal through P2. (Fig. 5) 
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Q X 0 X) x2 X3 X4 b 

Fig. 5 Bounding a Concave Function by Chords 

The information that the function f is concave can thus be used in or-
der to reduce the interval of uncertainty. 

In order to complete the description of the proposed search method for 
concave functions, a few more conventions are necessary. At the ends of the 
interval [ a , b ] , we pretend that the function has value -QQ and if it has been 
evaluated there, we pretend that there are two values for the same abscissa, 
one of the values being infinite. Three evaluations will therefore reduce the 
interval of uncertainty as indicated in Fig. 6. 

We proceed to show that 

(5.5) concavity is an almost unpredictable spy (4.3). 

Proof. Suppose we have five points 

a < Xo < Xl •<= x2 < x3 < x4 ^ b , 
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Interval of 
Uncertainty 

b = x4 

Fig, 6 Three Evaluations 

where x0 and x4 may both coincide with the left end-point a, and similarly 
x3 and x4 may coincide with the right end-point b. For x. with i ^ 0949 

we have finite function values f(x.)9 whereas f(x0) and f(x4) are possibly 
infinite, provided x0 

more that 
a or x4 = b5 respectively,, We suppose further-
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f(x0) <= f(Xl) < f(x2) < f(x3) < f(x4) . 

Let [ c , d ] be the interval of uncertainty that results in view of concavity. 
Observe that 

x2 e [c ,d] . 

Now select any x with c ^ x ^ x2, xt < x, and assume that f(x) 
satisfies 

f(x) = f(x2) + 5(X - x2) 

for some 6 with 

f(x2) - f(Xl) 
0 < 6 < 

x2 - X ! 

Then the new interval of uncertainty taking concavity into account will be of 
the form [ c , d ] , where 

6(x - xt)(x2 - x) 
° = X + I x 2 ) - f(Xl) - 6(x2 - x) > x * 

The difference c - x measures the reduction of uncertainty due to concavity. 
Now by definition of 6 , 

6(x - xt)(x2 - x) 5(x2 - x1)2 

~ f (x2) - f (xt) - 5 (x2 - X!) ~ f(x2) - f(xt) - 6(x2 - xt) 

and the last term, independent of x, goes to zero as 5 goes to zero. In 
other words, the contribution of concavity beyond unimodality becomes arbi-
trarily small as f(x) approaches f(x2) from below, without assuming it. 

The symmetric argument can be carried out for x2 < x ^ d and x < x3. 
This then will establish concavity as an almost independent spy. 
[Continued on page 146. ] 


