[Continued from page 270.]

The solution is then given by Eq. (1.8) as

(2.5)
$$H_{n} = C_{11}\alpha^{n} + C_{12}n\alpha^{n-1} + C_{21}\beta^{n} + C_{22}n\beta^{n-1}$$

with the C_{ij} given by Eq. (1.9). In practice, however, the C_{ij} are most easily found by solving the set of simultaneous equations derived by applying the initial values, H_0 , H_1 , H_2 , H_3 , for n=0, 1, 2, 3. The solution yields:

$$C_{11} = \frac{3 - \alpha}{5} H_0 + \frac{2\alpha - 1}{5} H_1 + \frac{2}{25} (1 - 2\alpha)$$

$$C_{12} = 1/5$$

$$C_{21} = \frac{2 + \alpha}{5} H_0 + \frac{1 - 2\alpha}{5} H_1 + \frac{2}{25} (2\alpha - 1)$$

$$C_{22} = 1/5$$

REFERENCES

- 1. Gustav Doetsch, Guide to the Applications of the Laplace and Z Transforms, Van Nostrand Reinhold Company, New York, 1971.
- 2. Robert M. Giuli, "Binet Forms by Laplace Transform," Fibonacci Quarterly, Vol. 9, No. 1, p. 41.

[Continued from page 264.]

(If $M_2=1$, i.e., there is only one cell in the second group, then it cannot exchange with both $A_{M_1}^1$ and A_1^3 . The rearrangements corresponding to this case are eliminated in (6) since it occurs when $k_1=k_2=1$ and G(-1)=0.)

The remainder of the proof follows the same procedure. Define $k_j=1$ if $A_{M_j}^j$ and A_1^{j+1} exchange, $k_j=0$ otherwise, $j=3,\,\cdots,\,N-1.$ For each of 2^{N-1} possible values of $(k_1,\,k_2,\,\cdots,\,k_{N-1})$ the number of distinct arrangements of the N groups combined is

(7)
$$G(M_1 - k_1) + G(M_N - k_{N-1}) \cdot \prod_{j=2}^{N-1} G(M_j - k_{j-1} - k_j).$$

[Continued on page 293.]