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{where q' = r(q'-1)), which are the numbers u{n; q,r) in the Tribonacei

convolution triangle! See [4].
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The total number of distinct arrangements of the N groups combined is ob-
tained by summing the expression in (7) over all possible values of (ky, ko,

coe, kN—l)’ i.e., over the set S But the total number of distinct ar-

N-1°
rangements is also equal to

G E M,
=1

The identity in (3) then follows from G(@) = F{n + 1),
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