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(where q? = r (q f ~l ) ) , which are the numbers u(n; q,r) in the Tribonacci 
convolution triangle I See [4]. 
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The total number of distinct arrangements of the N groups combined is ob-
tained by summing the expression in (7) over all possible values of (k1? k2, 

° ' s * ^N-1 ^ io e° ? o v e r t n e s e^ ^N_.I B •But t n e total number of distinct a r -
rangements is also equal to 

G(z>j 

The identity in (3) then follows from G(n) = F(n + 1). 


