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Horadam [1] has shown that Pythagorean triples are Fibonacci-number triples. It has
now been found that Pythagorean triples are Pell-number triples as well.

The Diophantine solution for Pythagorean triples (x, y, z) is x = 2pq, y = p? - ¢?,
and z = p? +¢?, where p > q. For primitive solutions (p,q) = 1, p and q are of dif-
ferent parity, x or y = 0 (mod 3) [2],x = 0 (mod 4), and all prime factors of z are

congruent to 1 modulo 4. Since x # y, regardless of primitivity, let
@ y-x=7p"-¢ - 2q = ic

which is readily transformed into

(2) p-q= '\lzqzic
and
3) p+q='\/2p2ic .

It may be noted in passing that all values of ¢ for primitive triples are of the form 12d +1
and 12d + 5, where d = 0, 1, 2, 3, --+. However, less than fifty percent of numbers of
this form are possible values of c, because this representation by means of three Pell num-
bers includes all odd numbers not divisible by 3.

Two characteristic identities of the Pell-number sequence,

(4:) Pn_‘_z = 2Pn+1 + Pn (Po = 0, Pl = 1)
and

2 9 - (. n+1
®) (Pn+1 + Pn) Y 1

were used [3] to prove that Pell numbers generate all values for (x, y, z) when c = 1.
Multiplication of (5) by a? shows that Pell numbers also generate all values for (x, y, z)

when c = a?, regardless of primitivity. Thus, when ¢ =1, q, = Pn and P, = Pn 410
c =4, q, = ZPn; c =09, q, = 3Pn, etc. Similarly, Pell numbers generate all (x, y, z)

= 9232 i imiti = = + =
when c¢ = 2a%, obviously nonprimitive. When c¢ = 2, 9 Pn 1 Pn and P, Pn +2 +
Pn+1; c = 8, q, = Z(Pn+1 + Pn); c =18, q, = ?:(PnJr1 + Pn)’ ete.

All other Pythagorean triples are represented by generalized Pell numbers, similar to
Horadam's generalized Fibonacci numbers [4], in such a way that a pair of equations is
associated with each value of c.
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(6a) Ggne1 OF Ygpep T 2Py - PPy
and
(6b) q2n+2 or OJ2n+1 = an+1 * aPn

where a > b. The value of p, associated with a given value of q, is obtained by replacing
n by (n+1). It will be noted that the odd and even values form two distinct sequences.
Upon combining (2) and (3) with (6), we obtain

(7a) Pon+l ™ Yo = @ - PPy, * @+ DIP,
(7b) Pon+g ™ %pn4a T @ +b)Pn+1 + b - a) Pn
and

(8a) Ponsy * Gzney = B2 - DIP y + @ - DIP
(8b) Ponss © Gopig = (a + 3]0)13][1+1 + (@ + b)Pn s

where the subscripts for p and q may be interchanged between (7a) and (7b) as well as be-
tween (8a) and (8b) as needed.

Since Pell numbers proper, and generalizéd Pell numbers for primitive solutions, are
alternately of different parity, and with p + q odd for primitive solutions, a +b must be
odd in view of (7) and (8). All other possible values of a + b also occur andgive rise to non—
primitive triples. Thus, all (x, y, z) can be generated, and no impossible values occur.
Once obtained, all values are easily verified, and any oversight of a permissible value of ¢
becomes obvious by the absence of an expected pair (a,b). But there appears to be no sys-
tematic, analytical method of determining a priori either possible values of ¢ or their as-
sociated pair or pairs of (a,b), except for ¢ = a* and c = 2a%, where b = 0.

Following is a table of the first 33 values for ¢, a, and b > 0. Values of c giving

rise to primitive solutions are underlined.

¢ a b e a b c a2 b
7 2 1 56 6 2 97 7 6
14 3 1 62 7T 1 98 9 1
7 3 2 63 6 3 103 8 3
23 4 1 - 68 6 4 112 8 4
28 4 2 71 6 5 13 9 2
31 4 3 73 7T 2 119" 8 5
34 5 1 9 8 1 g 10 1
41 5 2 82 7 3 124 8 6
46 5 3 89 T 4 126 9 3
a1 6 1 92 8 2 127 8 7
4% 5 4 94 7 5 136 10 . 2
*This also has the solution VP . " ™ This is the first value with two pairs
**This also has the solution 7(P ., + Py) of solutions.

[Continued on page 412. |



