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It was shown by L. Kuipers and Jau-shyong Shiue [2] that the only moduli for which the
Fibonacci sequence {Fn}, n=1, 2, ---, can possibly be uniformly distributed are the
powers of 5. In addition, the authors proved the Fibonacci sequence to be uniformly distrib-
uted mod 5, and they conjectured that this holds for all other powers of 5 as well. In this
note, we settle this conjecture in the affirmative. Thus we show, in particular, that the Fib-
onacci sequence attains values from each residue class mod Sk, and each residue class
occurs with the same frequency. The weaker property of the existence of a complete residue
system mod m in the Fibonacci sequence was investigated earlier by A. P. Shah [3] and
G. Bruckner [1]. For definitions and terminology we refer to [2].

Theorem. The Fibonacci sequence {Fn}, n=1, 2, +++, is uniformly distributed
mod 5 forall k= 1.

Before we start the proof, let us collect some useful preliminaries. It follows from a
result of D. D. Wall [5, Theorem 5] that {Fn}, considered mod 5k, has period 4-5k.
Therefore it will suffice to show that, among the first 4-5k elements of the sequence, we
find exactly four elements, or, equivalently, at most four elements from each residue class
mod 5k. It will also be helpful to know that, for j =1, the largest exponent e such that
5 divides (2j+1)! satisfies (see [4]):
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Proof of the Theorem. We proceed by induction on k. For k = 1, the result was al-

verified by comparing the coefficients of xt in (1+x)

ready shown in [2]. Now assume that, for some k = 2 and every integer a, the congruence
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n = ¢ (mod 4-5k—1) for one of the four c's. We complete the proof by showing that each

) has exactly four solutions ¢ with 1 =c=4-. 5k—1. If n is asolution

1), hence by periodicity:

value of ¢ yields at most one solution n. For suppose we also have Fm = a (mod 5k),
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l1=m= 4-5k, m = ¢ (mod 4.5

), and WLOG n = m. Then, in particular, F_= F
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(mod 5) and n = m (mod 45

). Using the well-known representation
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where (r) =0 for r> n, we arrive at
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Since 2 = 1 (mod 5 ) by the Euler-Fermat Theorem, we get
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We claim that, for j = 1, the corresponding term in this sum is divisible by 5k. By (2):
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We look at 5’ (n _1 m) . From (1) we see that cancelling out 5's .from i! against 5 leaves
at least one power of 5 in the latter number. Since there is a factor 5k"1 in n-m, we
get the desired divisibility property. Thus, from (3), we are left with the term correspond-
ingto j=0: n-m = 0 (mod 5k’). Together with n = m (mod 4-5k'1), this implies n =

m (mod 4-5k) or n = m.
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