FIBONACCI NUMBERS OBTAINED FROM PASCAL'S TRIANGLE WITH GENERALIZATIONS

H. C. WILLIAMS University of Manitoba, Winnepeg 19, Canada

1. INTRODUCTION

Consider the following array of numbers obtained from the first k lines of Pascal's Triangle.

1	0	0	• • •	0
1	1	0	• • •	0
1	2	1	• • •	0
1	$\binom{k-1}{1}$	$\begin{pmatrix} k-1\\2 \end{pmatrix}$	•••	1
k	$\binom{k}{2}$	$\binom{k}{3}$	• • •	1
2k - 1	$2\binom{k}{2}$	$2\binom{k}{3}$		2
4k - 3	$4\binom{k}{2}-1$	$4\binom{k}{3}$		4

If we let the element in the i+1th column and nth row be $F_{i,n}$, then $F_{i,n} = \binom{n}{i}$ $(n,i=0,1,2,\dots,k-1)$ and

$$F_{i,n} = \sum_{j=1}^{k} F_{i,n-j}$$
 (i = 0, 1, 2, ..., k - 1; |n| = k, k + 1, ...).

If k=2, $F_{0,n}=f_{n+1}$, $F_{1,n}=f_n$, where f_n is the n^{th} Fibonacci number; and if k=3, $F_{1,n}=L_{n+1}$ and $F_{2,n}=K_{n-1}$, where L_n and K_n are the general Fibonacci numbers of Waddill and Sacks [8]. Also, $F_{k-1,h}=f_{h,k}$ where the $f_{n,k}$ are the k-generalized Fibonacci numbers of Miles [5], and $F_{0,n}=U_{k,n}$ of Ferguson [2]. Both the numbers $f_{n,k}$ and $U_{k,n}$ are of use in polyphase merge sorting techniques (see, for example, Gilstad [3] and Reynolds [6]).

The purpose of this paper is to investigate some of the properties of a more general set of functions which include the functions $F_{i,n}$ ($i=0,1,2,\cdots,k-1$) and several others as special cases.

2. NOTATION AND DEFINITIONS

Let $\{\alpha_1, \alpha_2, \dots, \alpha_k\}$ be a fixed set of k integers such that

$$F(x) = x^{k} - \alpha_{1}x^{k-1} + \alpha_{2}x^{k-2} + \cdots + (-1)^{k}\alpha_{k}$$

has distinct zeros ρ_0 , ρ_1 , \cdots , ρ_{k-1} . Let a_0 , a_1 , \cdots , a_{k-1} be any k integers and define

$$\phi_{i} = \sum_{j=0}^{k-1} a_{j} \rho_{i}^{j}$$
 (i = 0, 1, 2, ..., k - 1).

Finally, let

$$\mathbf{D} \ = \begin{bmatrix} 1 & \rho_0 & \rho_0^2 & \cdots & \rho_0^{k-1} \\ \\ 1 & \rho_1 & \rho_1^2 & \cdots & \rho_1^{k-1} \\ \\ 1 & \rho_{k-1} & \rho_{k-1}^2 & \cdots & \rho_{k-1}^{k-1} \end{bmatrix}$$

$$\Delta \ = \ |\mathbf{D}| \ .$$

We shall concern ourselves with the functions

(2.1)
$$A_{i,n} = \frac{1}{\Delta} \begin{vmatrix} 1 & \rho_0 & \cdots & \rho_0^{i-1} & \phi_0^n & \rho_0^{i+1} & \cdots & \rho_0^{k-1} \\ \frac{1}{1} & \rho_1 & \cdots & \rho_1^{k-1} & \phi_1^n & \rho_1^{i+1} & \cdots & \rho_1^{k-1} \\ \frac{1}{1} & \rho_{k-1} & \cdots & \rho_{k-1}^{i-1} & \phi_{k-1}^n & \rho_{k-1}^{i+1} & \cdots & \rho_{k-1}^{k-1} \end{vmatrix}$$

$$(i = 0, 1, 2, \dots, k-1).$$

It is clear that

(2.2)
$$A_{i,n} = \frac{1}{\Delta} \sum_{i=0}^{k-1} c_{ij} \phi_j^n \qquad (i = 0, 1, 2, \dots, k-1) ,$$

where c_{ij} is the cofactor of ρ_i^j in D. If $a_i=1$, $a_i=0$ (i=0, 2, 3, ..., k-1), we have $\phi_i=\rho_i$; and, in this case, we define A_{i,n} to be z_{i,n}. These functions, which are quite useful in the determination of the

properties of $A_{i,n}$, have been dealt with in some detail by authors such as Bell [1], Ward [9] and Selmer [7]. When $\alpha_i = (-1)^{i+1}$ (i = 1, 2, ..., k), $\{z_{k-1,n}\}$ is the general Fibonacci sequence discussed by Miles [5] and Williams [10].

Since matrix methods are advantageous in the treatment of the $A_{i,n}$ functions, we introduce the following:

$$C = \frac{1}{\Delta} \begin{bmatrix} c_{00} & c_{10} & \cdots & c_{k-1 \ 0} \\ c_{01} & c_{11} & \cdots & c_{k-1 \ 1} \\ c_{0 \ k-1} & c_{1 \ k-1} & \cdots & c_{k-1 \ k-1} \end{bmatrix},$$

$$C_{i} = \operatorname{diag}(c_{i0}, c_{i1}, \cdots, c_{i \ k-1}),$$

$$\begin{bmatrix} c_{i,0} & c_{i,1} & \cdots & c_{i \ k-1} \end{bmatrix},$$

$$Z_{i} = \begin{bmatrix} z_{i,0} & z_{i,1} & \cdots & z_{i,k-1} \\ z_{i,1} & z_{i,2} & \cdots & z_{i,k} \\ \vdots & \vdots & \vdots & \vdots \\ z_{i,k-1} & z_{i,k} & \cdots & z_{i,2k-2} \end{bmatrix}$$

$$\mathbf{P_{n,r}} = \begin{bmatrix} \phi_0^{n} & \phi_1^{n} & \dots & \phi_{k-1}^{n} \\ \phi_0^{n+r} & \phi_1^{n+r} & \dots & \phi_{k-1}^{n+r} \\ -\frac{\phi_0^{n+(k-1)r}}{\phi_0^{n+(k-1)r}} & \phi_1^{n+(k-1)r} & \dots & \phi_{k-1}^{n+(k-1)r} \end{bmatrix}$$

$$B_{n,r} = \begin{bmatrix} A_{0,n} & A_{1,n} & \cdots & A_{k-1,n} \\ A_{0,n+r} & A_{1,n+r} & \cdots & A_{k-1,n+r} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{0,n+(k-1)r} & A_{1,n+(k-1)r} & \cdots & A_{k-1,n+(k-1)r} \end{bmatrix}$$

3. SPECIAL CASES

The $A_{i,n}$ functions include a number of interesting functions as special cases. We have already mentioned the $z_{i,n}$ functions in the previous section and in this section we describe several other special cases. We first show the relation of the function $F_{i,n}$ to $A_{i,n}$. Let H_j $(j=1,\,2,\,\ldots,\,k)$ be the j^{th} elementary symmetric function of $\phi_0,\,\phi_1,\,\cdots,\,\phi_{k-1}$, then

(3.1)
$$A_{i,n} = \sum_{j=1}^{k} (-1)^{j+1} H_j A_{i,n-j}$$

If

$$\alpha_{i} = (-1)^{i} \left[\binom{n}{i} - \binom{n}{i-1} \right] \quad (i = 1, 2, \dots, k)$$

and $a_0 = a_1 = 1$, $a_i = 0$ (i = 2, 3, ..., k - 1), we have $\phi_i = 1 + \rho_i$ and $H_j = (-1)^{j+1}$. Hence,

$$A_{i,n} = \sum_{j=1}^{k} A_{i,n-j}$$

and

$$A_{i,n} = \binom{n}{i} \qquad (0 \le i, n \le k - 1);$$

thus, in this case,

$$A_{i,n} = F_{i,n}$$

When k-2, $\alpha_1=1-2a$, $\alpha_2=a^2-a-1$, $a_0=a$, $a_1=1$, we have $H_1=1$, $H_2=-1$, and $A_{0,n}=af_n+f_{n-1}$, $A_{i,n}=f_n$. If $\alpha_1=0$, $\alpha_2=-5$, $a_0=a_1=1$, we have

$$A_{0,n} = 2^{n-1}\ell_n$$
 and $A_{1,n} = 2^{n-1}f_n$,

where ℓ_n is the n^{th} Lucas number. If (x_1, y_1) is the fundamental solution of the Pell equation

$$(3.2) x^2 - dy^2 = 1,$$

$$\alpha_1 = 0$$
, $\alpha_2 = -d$, $a_0 = x_1$, $a_1 = y_1$,

Then $A_{0,n} = x_n$ and $A_{1,n} = y_n$, where (x_n, y_n) is the n^{th} solution of (3.2). When k = 3, we also have some interesting cases. For example, if $\alpha_1 = \alpha_2 = \alpha_3 = 2$ and $a_0 = -a_1 = a_2 = 1$, we have $H_1 = -H_2 = H_3 = 1$ and $A_{0,n} = U_{3,n}$, $A_{1,n} = -L_{n-1}$, $A_{2,n} = f_{3,n+1} = K_n$. If (x_1, y_1, z_1) is a fundamental solution of the diophantine equation (Mathews [4])

$$(3.3) x3 + dy3 + d2z3 - 3dxyz = 1,$$

and $\alpha_0 = \alpha_2 = 0$, $\alpha_3 = d$, $a_0 = x_1$, $a_1 = y_1$, $a_2 = z_1$, then all the solutions of (3.3) are given by

$$(A_{0,n}, A_{1,n}, A_{2,n})$$
 $(|n| = 0, 1, 2, ...)$.

4. IDENTITIES

We now obtain several of the important relations satisfied by the $A_{i,n}$ functions. It will be seen that each of these relations is a generalization of a corresponding identity satisfied by the Fibonacci numbers. The most important properties of the Fibonacci numbers are the identities which connect the numbers f_{n+m} , f_{n-m} and f_{nm} to other Fibonacci numbers. For the sake of convenience, we shall call these relations the addition, subtraction, and multiplication formulas.

By (2.1),

$$B_{i,n+m,r} = P_{n,r}C_iP_{m,r}$$

where we denote by B' the transpose of the matrix B. Since

$$CD = DC = I$$

$$B_{i,n+m,r} = P_{n,r}C'D'C_iDCP_{m,r} = B_{n,r}Z_iB_{m,r}';$$

hence,

$$A_{i,m+n} = (A_{0,n}A_{1,n}A_{2,n} \cdots A_{k,n})Z_{i}(A_{0,m}A_{1,m} \cdots A_{k,m})'$$

$$= \sum_{h=0}^{k-1} \sum_{i=0}^{k-1} z_{i,h+j}A_{h,n}A_{j,m} .$$

This is the addition formula for $A_{i,n}$.

By the definition of A_{i,n} it follows that

(4.2)
$$\phi_{i}^{m} = \sum_{j=0}^{k-1} A_{j,m} \rho_{i}^{j} ;$$

thus,

$$\rho_{i}^{h} \phi_{i}^{m} = \sum_{j=0}^{k-1} \rho_{i}^{j+h} A_{j,m}$$

$$= \sum_{j=0}^{k-1} \rho_{i}^{h} \left(\sum_{j=0}^{k-1} z_{h,j+k} A_{j,m} \right)$$

Now if $H = H_k = \phi_0 \phi_1 \phi_1 \cdots \phi_{k-1}$,

$$\mathbf{H^{m}A_{i,n-m}} = \frac{1}{\Delta} \begin{vmatrix} \phi_{0}^{m} & \rho_{0}\phi_{0}^{m} & \cdots & \rho_{0}^{i-1}\phi_{0}^{m} & \phi_{0}^{n} & \rho_{0}^{i+1}\phi_{0}^{m} & \cdots & \rho_{0}^{k-1}\phi_{0}^{m} \\ \phi_{1}^{m} & \rho_{1}\phi_{1}^{m} & \cdots & \rho_{1}^{i-1}\phi_{1}^{m} & \phi_{1}^{n} & \rho_{1}^{i-1}\phi_{1}^{m} & \cdots & \rho_{1}^{k-1}\phi_{1}^{m} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \phi_{k-1}^{m} & \rho_{k-1}\phi_{k-1}^{m} & \cdots & \rho_{k-1}^{i-1}\phi_{k-1}^{m} & \phi_{k-1}^{m} & \rho_{k-1}^{i+1}\phi_{k-1}^{m} & \cdots & \rho_{k-1}^{k-1}\phi_{k-1}^{m} \end{vmatrix}$$

By (4.2)

$$\begin{vmatrix} x_{i,n-m} & x$$

this is the subtraction formula for $A_{i,n}$. Since

$$A_{i,nm} = \frac{1}{\Delta} \sum_{j=0}^{k-1} c_{ij} \phi_j^{nm} ,$$

$$A_{i,nm} = \sum_{j=0}^{k} (\Delta^{-1} c_{ij}) \left(\sum_{h=0}^{k-1} A_{h,m} \rho_j^h \right)^m .$$

From (4.2), we get the multiplication formula

$$A_{i,nm} = \sum \frac{m!}{i_1!i_2! \cdots i_k!} \prod_{j=1}^{k} A_{j,m}^{i_{j}} z_{i,s}$$
,

where the sum is taken over all non-negative integers i_1, i_2, \cdots, i_k such that $\sum i_k = m$; and $\sum (j-1)i_j$.

We may easily evaluate the determinants of $B_{n,r}$ and $B_{i,n,r}$ by first introducing the matrix.

$$Q_{n} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \phi_{0}^{n} & \phi_{1}^{n} & \cdots & \phi_{k-1}^{n} \\ \vdots & \vdots & \vdots & \vdots \\ \phi_{0}^{(k-1)n} & \phi_{1}^{(k-1)n} & \cdots & \phi_{k-1}^{(k-1)n} \end{pmatrix}$$

Now

$$Q_{n}C = \begin{vmatrix} A_{0,0} & A_{1,0} & \cdots & A_{k-1,0} \\ A_{0,n} & A_{1,n} & \cdots & A_{k-1,n} \\ A_{0,(k-1)n} & A_{1,(k-1)n} & \cdots & A_{k-1,(k-1)n} \end{vmatrix}$$

hence

$$|Q_{\mathbf{n}}| = \Delta \begin{vmatrix} A_{1,\mathbf{n}} & \cdots & A_{k,\mathbf{n}} \\ A_{1,2\mathbf{n}} & \cdots & A_{k,2\mathbf{n}} \\ \cdots & \cdots & \cdots & \cdots \\ A_{1,(k-1)\mathbf{n}} & \cdots & A_{k,(k-1)\mathbf{n}} \end{vmatrix}$$

Since

$$|P_{n,r}| = H^n |Q_r|,$$

we have

(4.5)
$$|B_{n,r}| = \frac{H^n}{\Delta} \begin{vmatrix} A_{1,r} & \cdots & A_{n-1,r} \\ A_{1,2r} & \cdots & A_{n-1,2r} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1,(k-1)r} & \cdots & A_{n-1,(k-1)r} \end{vmatrix}$$

and

(4.6)
$$|B_{i,n,r}| = H^{n}|Z_{i}| \begin{vmatrix} A_{1,r} & \cdots & A_{n-1,r} \\ A_{1,2r} & \cdots & A_{n-1,2r} \\ \cdots & \cdots & \cdots & \cdots \\ A_{1,(k-1)r} & \cdots & A_{n-1,(k-1)r} \end{vmatrix}^{2} .$$

REFERENCES

- 1. E. T. Bell, "Notes on Recurring Series of the Third Order," <u>Tôhoku Math. Journal</u>, Vol. 24 (1924), pp. 168-184.
- 2. David E. Ferguson, "An Expression for Generalized Fibonacci Numbers," Fibonacci Quarterly, Vol. 4 (1966), pp. 270-273.
- 3. R. L. Gistad, "Polyphase Merge Sorting An Advanced Technique," Proc. Eastern Joint Computer Conference, Dec. 1960.
- 4. C. B. Mathews, "On the Arithmetic Theory of the Form $x^3 + ny^3 + n^2z^3 3nxyz$," Proc. London Math. Soc., Vol. 21 (1891), pp. 280-287.
- 5. E. P. Miles, Jr., "Generalized Fibonacci Numbers and Associated Matrices," Amer. Math. Monthly, Vol. 67 (1960), pp. 745-752.

- 6. S. W. Reynolds, "A Generalized Polyphase Merge Algorithm," Communications of the ACM, Vol. 4 (1961), pp. 347-349.
- E. S. Seimer, <u>Linear Recurrence Relations over Finite Fields</u>, University of Bergen, Norway, 1966.
- 8. M. E. Waddill and L. Sacks, "Another Generalized Fibonacci Sequence," Fibonacci Quarterly, Vol. 5 (1967), pp. 209-222.
- 9. Morgan Ward, "The Algebra of Recurring Series," Annals of Math., Vol. 32 (1931), pp. 1-9.
- 10. H. C. Williams, "On a Generalization of the Fibonacci Numbers," Proc. Louisiana Conference on Combinatorics, Graph Theory and Computing, Louisiana State University, Baton Rouge, March 1-5 1970, pp. 340-356.

[Continued from page 401.]

REFERENCES

- 1. Brother U. Alfred, "Exploring Special Fibonacci Relations," Fibonacci Quarterly, Vol. 4, Oct., 1966, pp. 262-263.
- 2. D. Zeitlin, "Power Identities for Sequences Defined by $W_{n+2} = dW_{n+1} cW_n$," Fibonacci Quarterly, Vol. 3, Dec. 1965, pp. 241-256.

[Continued from page 404.]

REFERENCES

- 1. A. F. Horadam, American Math. Monthly, Vol. 68 (1961), pp. 751-753.
- 2. C. W. Trigg, Mathematical Quickies, McGraw Hill (1967), pp. 69, 198.
- 3. E. M. Cohn, submitted to Fibonacci Quarterly.
- 4. A. F. Horadam, American Math. Monthly, Vol. 68 (1961), pp. 455-459.

· · · ANNOUNCEMENT . . .

The Editor (who always parks in a Fibonacci-numbered parking space) noted the following in the latest publication of the Fibonacci Association, A Primer for the Fibonacci Numbers: There are 13 authors, each of whom wrote a Fibonacci number of articles. Each coauthor has a Fibonacci number of articles with a given co-author. There are 11 articles with one author, and 13 articles have co-authors. Of the twenty-four articles, 13 are Primer articles, and 11 are not.

The Primer, co-edited by Marjorie Bicknell and V. E. Hoggatt, Jr., is a compilation of elementary articles which have appeared over the years. These articles were selected and edited to give the reader a comprehensive introduction to the study of Fibonacci sequences and related topics. The 175-page Primer will be available in the Fall of 1972 at a cost of \$5.00.