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1. INTRODUCTION

Let Wy, Wy, ¢ #0, and d # 0 be arbitrary real numbers, and define

(1.1) W = dW o - W, a2 - 4c £ 0, (@ =10,1,:"),
(1.2) Z, =@ -b)/@-b @=01,-),
(1.3) vo=a +b'  (=0,1,0),

where a # b are the roots of y> - dy +c = 0, We shall define

—_— n —_ o e e
(1.4) W_n = (WOVn - Wn)/c n=0,1, ).
If Wy =0 and Wy =1, then Wn = Zn’ n=20,1,+; and if Wy =2 and W; = d, then
Wn = Vn’ n=0,1, ---, The phrase, Lucasg functions (of n) is often applied to Zn and
V.
n

It should be noted that

(1.5) Wn = WOZn+1 -+ (W1 - dWO)Zn = 0,1, :+);

and we shall refer to Zn’ n=0,1, "+, as the fundamental solution of (1.1). Let Wr"l‘ be
a second, general solution of (1.1) with initial values W§ and Wi Since W; also satisfies
(1.5), we now see that the product sequence, WnW;’ can be represented as a linear com-

7 7 and Zfl. We observe that

. R 9
bination of Zn+1’ mZn+1’

(1.6) WW_ = Ca™ + ™ + 0" = 0,1, ),

where Ci’ i =1, 2, 3, are arbitrary constants, is the general solution of a third-order

linear difference equation whose characteristic equation is

1.7 x - c)x? - Vox + c2) = 0,

If the initial conditions of Wn and W;“l are chosen such that C3 = 0, then WHW;*1 is also a

solution of a second-order linear difference equation, and its representation is of interest.
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2. STATEMENT OF RESULTS

Theorem 1. Let Wn and W;“l, n=0,1, ..., be solutions of (1.1). Then (see (1.6))

(2.1) WoWs - VoW Wi + c?WoWg = 0

is a necessary and sufficient condition that C3 = 0. If C; = 0, then

* = Wk _ (q2 * * .
(2.2) WIIWH ((W1 W1 (d C)WoWo )/d)Zzn + W()Wo Z2n+1 ;

and if P = W_W¥*, then
n nn

(2.3)

and

V,P

2 - =
Pn+2_ 2n+1+an—0 o =0,1, )

PO + (P1 - VzPo )X o
(2.4) = Z P X', (V, = d? - 2¢).
1 - Vyx + c%?

n=0

Corollary 1. If d
acci number. Since Vy; = 3 and Zn = Fn’ the ordinary Fibonacci number, we obtain from
(2.2)

-¢ =1, then VVn = Hn’ where Hn is the generalized Fibon-

H H*
nn

il

*

(H]_Hik - ZHoHO )an + HoH(’)k F2n+1

(2.5)
= HEFF, - HHfF, ,

(since F2n+ =2F, -F ), where (see (2.1))

1 2n 2n-2
(2.6) HoHY - SHHF + HeHf = 0.
* = = = e : s s .
If H‘f1 = Hn_1 + Hn+1 = Gn’ n=20,1, , then (2.6) is satisfied and thus (2.5) gives
(2.7) HnGn = HlGl‘Fle - HOGOan-Z @=0,1, )3

and from (2.4), we obtain

HyGy + (H{Gy - SHoG)x ©

(2.8) = H G =%,
1 - 3x +x% n

n=0

Remarks. Our special result (2.7) solves completely the problem posed by Brother U.
Alfred [1], where (2,9), for example, must stand for (Hy, Hy), and not, as incorrectly
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indicated (Hy, Hy). If H =F, then G, =L, and (2.7) reduces to the well-known iden-

tity, FnLn =F, and (2.8) gives

1 - 3x + x?

3. PROOF OF THEOREM 1

For n =0, 1, and 2, Eq. (1.6) gives alinear system of three equations for the three
unknowns Cj, C;, and Cs. We readily find that C3 = N/D, where D = cd(a - b)? # 0 is

the determinant of the system

(3.1) WoW¢ = Cy + Cy + Cy
(3.2) W,WiF = d%Cy + b2C, + cCy
(3.3) W,Wy = alC; + bliC, + c2Cs
and
1 1 Wowy
N = |a® b2 wW,Wi| .
at pt W,wy

If we set N = 0, we obtain the necessary condition (2.1) for Cg = 0.
For the sufficiency proof, we assume that (2.1) is true. If we multiply both sides of
(3.1) by c? and both sides of (3.2) by -V,, then the addition of the resulting equations to

(3.3) gives, using (2.1),

(3.4) 0 = (c® - aV, + a%)Cy + (e - b2V, + b4)Cy + (¢ - cVy + c?)Cy .

Since ¢ = ab and V, = a? +b?, we obtain from (3.4)

0 = -abla - b)?C; .

Since a # b # 0, we must have Cz = 0.
If C3 = 0, then (see (1.6))

P o= WWF = Ca®® +Cp?,  n=0,01, .
n n n

Since P; = Cy + Cy, we obtain, respectively, noting (1.2),
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(3.5) P = Cylb - a)Z, + P @ =o0,1
° n 2 2n 0 s Ly

(3.6) P =Cia-bZ, +Pb® (@=01,-
) n e 2n 0 i

Evaluating Cy in (3,5) (for n = 1) and C; in (3.6) (for n = 1),
after simplification,

2n

[Oct.

),

e,

we obtain, respectively,

(3.7) P = [Py - a2po)/d]z2n + Ppa m=0,1, :4),
(3.8) P = [(® - WP)/d]Z, +Pp™ (o= 0,1,00)
Addition of (3.7) and (3.8) gives
(3.9) 2P, = [epy - VZPO)/d]ZZH + PV, m=0,1,-.+).
Since (see (1.5)) V2n = 222n+1 - dZZn’ we obtain from (3.9)

= _ 2
(3.10) 2dP = 2Py - Py(Vy + d?)Z, + 2dP(Z, .. .
Noting that V, + d* = 2d% - 2c, we obtain from (3.10),

= [(Py - 2 _
(3.11) P [Py - Py(d® - 0)/d]Z, + PyZ, .

Since P = WnW;‘l‘, Eq. (3.11) reduces to (2.2).
If we set (E2 - V,E + c2)W_W* = Q_, where E™A_ = A
n n n n n-+m

(3.12) (E - C)Qn =0.

The solution to (3.12) is

(3.13) Q = K"

h (K, a constant) .

But K = Qj, and so (3.13) reads

* -
(3.14) Wn+2Wn+2 2 'n+l n+l

where

Qy = WoW¥ - VoW, Wi + c2WoW¢ .

If (2.1) is true, then @, = 0, and P][1
(2.3).

W _W* gatisfies (2.3); and
n n

, then (1.7) becomes

* 2 * =
vV,W_ W +anWn ro ,

(2.4) follows readily from
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4. COMMENTS

If W;"l =W, q- (1/C)Wn+1 in Theorem 1, then (2.1) is satisfied. For example, if
0
W oo =2W, o, +W, then {Zn}o = {0, 1, 2, 5, 12, --- }, where Z, is Pell's sequence.
If we choose

{Wn}:° = {2,3,8,19, -+ }

and set
* =

Wn Wn—l * Wn+1’

then
w T = {2, 10,22, -+ };

D~y

and since d =2 and ¢ = -1, we obtain from (2.2) in Theorem 1
* = = e

(4.1) W wk 5Zg, * 42y 1y (n 0, 1, ),

where Zn is Pell's sequence.

Using results of the author [2, p. 242], it seems reasonable that the conclusions of
Theorem 1 may be extended (properly interpreted) to p products of solutions of (1.1), where
p=2,4,6, . Forexample, if P_ = W WXWHW*¥*  where W _, W¥, W¥*, and W*¥*

n n'n'n n n’> "'n’ 'n n
are independent solutions of (1.1), then Pn satisfies a fifth-order linear difference equation

(see [2, (2.2), p. 242 ] whose characteristic equation is
L j
_ 2 2 _ 4y —
(4.2) x -c )g x* - c V4_2jx +ct) =0.

Since

2n

P = Cia4‘][l + Cy@®)™ + Cyc™™ + Cyabd)™ + 05b4n ,

we believe that C3 = 0 if and only if

1 .
(4.3) [T—[ (E? - cJV4 9B + 04)] Py, =0.
i=0 -

However, the representation of Pn under (4.3) is another matter.

For the case d? = 4c, d # 0, it appears that (2.2) of Theorem 1 holds under (2.1).
Moreover, if 2W; = dW;, then (2.1) holds for any arbitrary sequence Wr’l“. Since a = b,
we have Zn = na®*” , n=0,1, -, in (2.2).

[Continued on page 412. ]
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t-1 Kk
e - S 1)k
¢ k=0
Hence y (mod 10n), defined by (8), with coefficients given by (10) and (12), is an

automorphic number of tn places. By replacing k -t by k, we get the representation (1).

Further, by using identity (5),

t-1
o fet -1\ b=t -1
=t X

y t t+&k\ k J°

k=0

where

i

X
it f ut'l(l - u)t—ldu =/ vt—l(l - xv)t_ldv
X

0

0

t-1
)3 (t i, 1) (-x)F
k t +k °?

k=0

by expanding (1 - xv)t—1 and integrating term-by-term. This result yields the representa-
tion (2).
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