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Let F be the n Fibonacci number, i. e . , Fi = 1, Fo = 2, and F = F ., + n * ^ n n-1 
F n - 2 f o r n - 3o tt i s w e l 1 k*10™11 [1] that every integer N ^ 1 has a unique representation 

(1) N = F . + F . + ••• + F. 
such that 
(2) i t > 1, i. - i . ^ > 2 for j > 2 . 

Conversely, if for all the integers N ^ 1, 

(3a) N = a. + a. + ••• + a< 
i t i2 to 

is unique under (2), then a. = F . for all j , i. e. , the uniqueness of (1)under (2) charac te r -
izes the Fibonacci sequence. Generalizing this theorem, I shall prove in the present note 
that at most one increasing sequence can represent uniquely all the integers N ^ 1 as sums 
of i ts elements under a given constraint and I shall give a combinatorial formula for this only 
possible sequence. 

Let e l 9 e2, ••• be non-negative integers and let C be a property which classifies 
each finite ordered set (e^, e2, 9 e • , e n ) into one of the two categories, those which possess 
C and those which do not. Denote by C(e) the collection of all the sequences satisfying C. 

Let ai < a2 < ••• be positive integers. Assume that every integer N > 1 has a 
unique representation in the form 

(3) N = S e . a . , { e . } £ C(e) 

and it is further assumed that 

(4) if a < N < a ± 1 then e ^ 0 . x ' n n+1 n 

My aim is to prove the following 
Theorem. If the property C is expressible independently of a l s a2, ••• then there 

is at most one sequence 0 < â  < a2 < • • • for which the representation (3) and (4) is unique. 
In this case , a* = 1 and for n > 1, 

n 

(5) an+1 = 1 + y ^ k ( n ' d ' C ) ' 
dpi-
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where k(n,d,C) is the number of n-vectors (e*, e2, - •* , e n ) satisfying C and such that 
exactly d of its coordinates differ from zero, 

Before giving its proof, I wish to make some remarks on the theorem itself and on its 
applications. F i r s t of alls I want to emphasize the second par t of the theorem, namely, that 
the sequence a is explicitly determined. In several concrete cases when the structure of 
C(e) is given, the uniqueness of {a.} can be shown by a simple argument but (5) is not ob-
vious even in these cases , and for a general C(e) the usual argument for the uniqueness, 
too, seems to be very complicated, if it works at all , since several cases should be distin-
guished* The formula (5) is very useful at obtaining information on the number of non-zero 
t e rms in (3) even if no explicit formula for k(n,d,C) is known. As an example, I mention a 
recent work of A. Oppenheim. Generalizing (1), he considered the following problem (per-
sonal communication). Let k., j - 1 be given positive integers and assume that (3a) is 
unique under the assumption that the f irst non-zero te rm in i. - i._1 - k- , i. - - i. - k~, • • • 
i s positive for all j ^ 2. In our notations it means that C(e) consists of all (ej, e2, • • • , e n ) , 

th st 
n > 2, where e. is either zero or one and if the gap between the j and the (j + 1) one 
in ( q , e2, • • * , e n ) is m. , then for all j , m. - k , , m 1 - k , • • • has the property that 
the first non-zero term is positive. A. Oppenheim determined the sequences k. for which 
such a representation exists (to be published). In our approach we obtain a construction for 
the corresponding a fs though here k(n,d,C) is a complicated expression. However, this 
combinatorial function has already been investigated in much details since it has close r e l a r 

tions to p-expansions, see [3 ] , which has a wide l i tera ture . Two special cases of this prob-
lem of Oppenheim, namely, when all k. = 2, or more generally, when for all j , k. = k, 
have been investigated earlier* The case k. = 2 for all j is simply the condition (2), hence 
the corresponding sequence a. is the Fibonacci sequence and the formula (5) gives back its 
relation to the Pascal triangle. When for all j , k. = k, we get the generalized Fibonacci 
sequence introduced by Daykin [ l ] , the original argument for the validity of (5) being fairly 
complicated even for this simple case. In my recent paper [2] , I obtained (5) for the gener-
alized Fibonacci numbers , and actually that investigation led to the discovery of the shortproof 
of this general theorem, which now follows. 

Proof. F i r s t of all , note that (3) and (4) imply that there is a one-to-one correspondence 
between the integers 1 < N < a - and the set of n-vectors (ej, e2, • o s » e n ) C(e). A s a 
mat ter of fact, in view of (4), for any (el9 e2,• ••• , e n ) belonging to C(e), 

(6) e ^ i + e2a2 + • • • + e n a n < a n + 1 

namely, if the reversal of the inequality (6) apply, then, putting M for the left-hand side of 
(6), in view of (4), M would have a representation with an a., j ^ n + 1, taking par t , which: 
by the definition of M, contradicts the uniqueness of (3). The converse of the one-to-one 
correspondence in question is obvious by (4). 

From this observation the proof is easily completed. Cancel those t e rms in (3) for which 
e. = 0, hence (3) determines a function d(N), the number of non-zero te rms in (3). Since 

[Continued on page 598. ] 


