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Let Fn be the nth Fibonacci number, i.e., F; =1, ¥y, =2, and Fn = Fn—l +
Fn—z for n = 3, It is well known [1] that every integer N = 1 has a unique representation
(49) N=F +F, +:0+F,

] 1y ol
such that
2) =1, i, - i = 2 for §j = 2.
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Conversely, if for all the integers N =1,
(3a) N =a, +a, +cec + a;

is unique under (2), then aj = Fj for all j, i.e., the uniqueness of (1) under (2) character-
izes the Fibonacci sequence. Generalizing this theorem, I shall prove in the present note
that at most one increasing sequence can represent uniquely all the integers N = 1 as sums
of its elements under a givenconstraint and I shall give a combinatorial formula for this only
possible sequence.

Let ey, €3, **+ be non-negative integers and let C be a property which classifies
each finite ordered set (e, ey, *°+, e,) into one of the two categories, those which possess
C and those which do not. Denote by C(e) the collection of all the sequences satisfying C.

Let a4 < ay < «+- be positive integers. Assume that every integer N >1 has a

unique representation in the form

(3) N = Zea, , {e;} € Cle)
and it is further assumed that
(4) if a = N < a1 then e #0 .

My aim is to prove the following
Theorem. If the property C is expressible independently of a3, aj, «-+ then there
is at most one sequence 0 < a; < ay < .+- for which the representation (3) and (4) is unique.
In this case, a; =1 and for n> 1,
n
(5) a4 = 1 +Zk(n,d,c) s
d=1
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where k(n,d,C) is the number of n-vectors (e;, e;, +++, e,) satisfying C and such that
exactly d of its coordinates differ from zero.

Before giving its proof, I wish to make some remarks on the theorem itself and on its
applications. First of all, I want to emphasize the second part of the theorem, namely, that
the sequence a, is explicitly determined. In several concrete cases when the structure of
C(e) is given, the uniqueness of {ai} can be shown by a simple argument but (5) is not ob-
vious even in these cases, and for a general C(e) the usual argument for the uniqueness,
too, seems to be very complicated, if it works at all, since several cases should be distin-
guished, The formula (5) is very useful at obtaining information on the number of non-zero
terms in (3) even if no explicit formula for k(n,d,C) is known. As an example, I mention a
recent work of A. Oppenheim. Generalizing (1), he considered the following problem (per-
sonal communication). Let k., j =1 be given positive integers and assume that (3a) is
unique under the assumption that the first non-zero term in ij - ij_1 - kl, ij+1 - ij - kz, ree
is positivefor all j = 2. In our notations itmeans that C(e) consists of all (ey, ey, *++, ep),
th and the (j +1)St one
1 mj+1 - kz, *** has the property that
the first non-zero term is positive. A. Oppenheim determined the sequences kj for which

n=> 2, where ej is either zero or one and if the gap between the j

in (e, ey =+, €y) is m]., then for all j, mj-k

such a representation exists (to be published). In our approach we obtain a construction for
the corresponding a's though here k(n,d,C) is a complicated expression. However, this
combinatorial function has already been investigated in much details since it has close rela-
tions to f-expansions, see [3], which has a wide literature. Two special cases of this prob-
lem of Oppenheim, namely, when all kj = 2, or more generally, when for all j, k. =Kk,
have been investigated earlier, The case kj = 2 for all j is simply the condition (2), hence
the corresponding sequence a]. is the Fibonacci sequence and the formula (5) gives back its
relation to the Pascal triangle, When for all j, kj =k, we get the generalized Fibonacci
sequence introduced by Daykin [1], the original argument for the validity of (5) being fairly
complicated even for this simple case. In my recent paper [2], I obtained (5) for the gener-
alized Fibonacci numbers, and actually that investigationled to the discovery of the shortproof
of this general theorem, which now follows.

Proof. First of all, note that (3) and (4) imply that there is aone-to-one correspondence

between the integers 1 < N < a, and the set of n-vectors (e;, ey, *°*, ey) Cle). Asa

+1
matter of fact, in view of (4), for any (ey, €3, *=+, ep) belonging to Cf(e),

(6) ea; + €8y + ccr +epay < anyy

namely, if the reversal of the inequality (6) apply, then, putting M for the left-hand side of
(6), in view of (4), M would have a representation with an a., j = n+ 1, takingpart, which:
by the definition of M, contradicts the uniqueness of (3). The converse of the one-to-one
correspondence in question is obvious by (4).

From this observation the proof is easily completed. Cancel those terms in (3) for which

e]. = 0, hence (3) determines a function d(N), the number of non-zero terms in (3). Since

[Continued on page 598. ]



