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Let a magic square of order n be surrounded by numbers such that square plus num-
bers form another magic square of order n + 2 and s imilar magic squares of order n + 4, 
n + 6 9 and so on; then the center square may be called a nucleus and the surrounding n u m -
bers a frame, 

In a le t ter of August 8, 1971, V. A« Golubev concocts and gives permission to publish 
the following magic square of order 11 consisting of pr imes of the form 30x + 17 and includ-
ing s imilar magic squares of order 3, 5, 7, and 9„ 
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The nucleus of order 3 contains the elements 61637, 62057, • •• , 64997 which are the nine 
pr imes in A„ P . given in the appendix of [3]e A pair of opposite pr imes in each frame adds 
up to 126634 = 2-63317, Important for constructing the frames is the fact that the sums of 
two opposite sides without the corners must be the same, Hence, the frame of order 5 has 

60497 + 54347 + 71147 + 66137 + 72287 + 55487 = 66617 + 53927 + 68567 + 60017 + 

+ 72707 + 58067 = 379902 = 2-3-63317 , 
the frame of order 7 has 

60527 + 60257 + 58427 + 59387 + 70937 + 66107 + 66377 + 68207 + 67247 + 55697 
= 51197 + 70667 + 56897 + 68897 + 69677 + 75437 + 55967 + 69737 + 57737 + 56957 
= 633170 = 2*5*63317 , 
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and so on. This comprises the s impler par t of the construction. For the corners , the two 
pa i r s of diagonally opposite p r imes must each not only add up to 126634 = 2-63317, but the 
sum of the elements of each of the two diagonals must also agree with the magic constant a l -
ready obtained by summing up n members in a vertical or horizontal way. This is the more 
difficult pa r t of the construction. Is someone able to attach a frame of order 13 to Golubev's 
beautiful magic square of pr imes 30x + 17? 

If we have pr ime magic squares of odd order , it is not necessary that the nucleus con-
s is t s of p r imes in A. P . such that 

Pi + d P2» p2 + d = p3, p8 + d P9 

In fact, the 3 and 6 d in those equations may be replaced by any number y = 6m such 
that the elements still remain pr imes . F o r example, 

_17 + 6 = - 1 1 , -11 + 6 = - 5 , -5 + 12 = 7, 7 + 6 = 13, 13 + 6 = 19, 

19 + 12 = 31, 31 + 6 = 37, 37 + 6 = 43 with d = 6 and y = 12. 

Choosing now the standard magic square of order 3 

and putting the right side of those 
equations, starting with -17, in 
that order into it, we obtain 
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yielding a pr ime magic square with magic constant 39. For the frames we may not request 
that their p r imes are of a special form. Of course , all means of construction should be the 
same as in Golubev!s pr ime magic square. Has such a magic square of p r imes , say of o r -
de r 13, ever been constructed? Yes, one can find it in [5 ] , and it may be republished here 
as a good example of magic squares of pr imes with no restr ic t ions attached to their construc-
tion. It says there: "This tremendous pr ime magic square was sent to Francis L. Miksa of 
Aurora , Elinois, from an inmate in prison who, obviously, must remain n a m e l e s s . " The 
nucleus of order 3 consists of tr iples of pr imes in A. P. with d = 6 and y = 3558. Each 
opposite pr ime pair in any frame adds up to 10874 = 2*5437, the magic constant of order 3 
i s 16311 = 3-5437, of order 5 i s 27185 = 5-5437, • • • , of order 13 is 70681 = 13-5437. 
It is constructed in the same way as Golubevfs magic square, but while there the difference 
between the la rges t p r ime , 119087, and the smallest p r ime , 7547, is 111540 = 22-3-5-ll-132, 
in the p r i soner ' s magic square it is 9967 and 907 with 9060 = 22,3-5-151. 

Is someone able to attach a frame of order 15 to the pr i soner ' s remarkable magic square ? 
Somewhat differently behave the pr ime magic squares of even order . The greates t 

attraction is here the pr ime magic square of order 12 by J . N. Muncey of Jessup , Iowa, 
which is the smallest possible magic square of consecutive odd p r imes , starting with 1, end-
ing with 827, and reproduced in [ 2 ] . It speaks for the attitude of mathematical journals 
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THE PRISONER'S PRIME MAGIC SQUARE 
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shortly before the outbreak of World War I that they would rather publish abstract mathema-
tics than such a genuine gem of mathematical thinking. Hence, one doesnft wonder that 
Munceyfs magic square of consecutive pr imes finally appeared in a philosophical journal 
[The Monist, 23 (1913), 623-630], We see at a glance that this pr ime magic square is of a 
different kind. Neither has it a nucleus of order 4 nor does it include similar magic squares 
of order 6, 8, and 10. Its magic constant is 4514 = 2*37*61. 

Another gem is the magic square of order 4 consisting of 16 pr imes in A. P . by S. C. 
Root of Brookline, Massachusetts. It is published in [4], Its magic constant is 

15637321864 = 23»43«45457331 , 

the common difference is 

223092870 = 2°3'5°7«11-13.17.19»23 . 

It i s not known whether there exists a sequence of 16 pr imes in A. P . with a smal ler 
common difference d. Theoretically, it should be possible to find such a sequence with 
d = 30030 = 2«3.5-7.11.13. 

If we have pr ime magic squares of an even order , the nucleus has not to consist of 

p r imes in A. P. Assuming again, 

Pi + d = p2 , p2 + d = p3 , • • • , p1 5 + d = p!6 

we shall see that the 4 t h , the 8 t h , and the 12 t h d can be replaced by 6m, but these all dif-
ferent, say u, v, and w. Each (2m - 1) d may be 30 and each 2(2m - 1) d may be 
12. In this way we obtain the pair of pr ime magic squares due to the late Leo Moser of the 
University of Alberta which are published in [5]. Moser uses not only p r imes , but twin 
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MUNCEY?S CONSECUTIVE PRIME MAGIC SQUARE 
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ROOT'S M^GIC SQUARE OF PRIMES IN A. P. 
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MOSER'S TWIN MAGIC SQUARESOF PRIMES IN 'A."P.. 
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pr imes . We see that u = 6, v = 18, and w = 7508 The magic constant of the left square 
is 1496 = 23»ll«17f the magic constant of the right square is 1504 = 25-47. The author r e -
members that Leo Moser had always a little self-fabricated poem on hand which served as a 
kind of donkey bridge to his brain twis ters : does someone recall the poem for the twin pr ime 
magic squares? 

We have attempted to give a glimpse into the more recent investigations on pr ime m a -
gic squares and to somewhat analyze the regular ones of them. Of course, a detailed t reat ise 
on their construction would not be permissible he re , but can be found in the almost classic 
collection of f l ] . 
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[Continued from page 650. ] 

The determination of the branching character is t ics of natural s t reams of c lass five and 
higher is an extremely difficult and tedious task. Thus any hypothesis proposed for s t ream 
patterns of high class is very difficult to test . If it could be shown that a Fibonacci or one of 
the generalized Fibonacci patterns could serve as a f irst approximation to natural pat terns , 
then any hypothesis proposed could quickly and easily be explored to very high orders and the 
resul t s used to plan tes ts that could be applied to natural pat terns. 

REFERENCES 

1. R. E. Horton, "Erosional Development of Streams and Their Drainage Bas ins , " Bull. 
Geol. Soc. Am. 56 (1945), pp. 275-370. 

2. L. B. Leopold, M. G. Wolman, and J. P . Miller, Fluvial Processes in Geomorphol-
ogy, W. H. Freeman, San Francisco, 1964. 

3. R. B. MacArthur and J. H. Connell, The Biology of Populations, John Wiley and Sons, 
New York, 1966. 

4. M. E. Morisawa, "Quantitative Geomorphology of Some Watersheds in the Appalachian 
Pla teau," Bull. Geol. Soc. Am. 73 (1957), pp. 1025-1046. 

5. A. E. Scheidegger, "The Algebra of Stream-Order Numbers , " U. S. Geol. Survey Prof. 
Paper , 525B (1965), pp. 187-189. 

6. A. E. Scheidegger, "Horton1 s Law of Stream Numbers," Water Resources Res . , 4(1968) 
pp. 655-658. 

7. W. E. Sharp, "An Analysis of the Lawsof Stream Order for Fibonacci Drainage P a t t e r n s , " 
Water Resources Res. 7 (1971), pp. 1548-1557. 

8. W. E. Sharp, "Stream Order as a Measure of Sample Source Uncertainty," Water Re-
sources Res. 6 (1970), pp. 919-926. 

9. R. L. Shreve, "Statistical Law of Stream Numbers , " Jour. Geol. 74 (1966), pp. 17-37. 
10. H. Steinhaus, Mathematical Snapshots, Oxford Univ. P r e s s , New York, 1969. 


