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In each case, the generalized Pascal's array can be generated by adding all the ele-
ments in the rectangle with k rows above and to the left of element A (not including ele-
ments in the same column as A) to get A. If the rectangle has k rows, then we get the
array induced by the expansions (1 +x +x%+... +xk_1)n, n=20,1,2,---. In these
rectangular arrays using k rows in formation, if sums are found of elements lying on dia-
gonals formed by going up (k + 1) and right one, the sequence formed obeys the recurrence
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where u; = uy, = 1, u, = zn‘z for 2=n=k +1, generalized Fibonacci sequences,
while the rising diagonals yield sums which are generalized Pell sequences obeying the

recurrence
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and with the first three members of the sequence the ordinary Pell numbers 1, 2, 5, and
the first k members of the sequence the same as the first k members of the sequence
found from the rectangular array using (k - 1) rows in its formation.

The convolution triangle for such generalized Fibonacci sequences canbe generated by
adding all the elements in the rectangle with k rows, includingthe column above an elemeént
A and extending to the extreme left of the array.

In any of these generalized Pascal's arrays or convolution arrays of generalized Fib-
ohacci sequences written in rectangular form, the determinant of any square array found in
the upper left-hand corner is always equal to one. The proofs and extensions will appear in
later papers [2], [3].
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