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INTRODUCTION

One of the early delights a neophyte in the study of Fibonacci numbers experiences may

be an encounter with some elementary summation properties such as

n
ZFi = Fp- 1.
i=1

As soon as his curiosity is aroused, he may wish to investigate summations which "skip" a
constant number of Fibonacci numbers, for instance the problem of obtaining a formula for
the sum of the first n Fibonacci numbers of odd position index.

But — as has often been observed — mathematicians are like lovers; give them thelit-
tle finger, and they will want the whole hand. Can one find a relationship which spells out
the sum of any finite Fibonacci sequence whose subindices follow the pattern of an arithmetic

progression?

A SUMMATION THEOREM (Theorem 1)

Seeking a pattern for the sum of a number of equally spaced Fibonacci numbers means

a concern with
n
ZFD. ) (nl = k.i+r) )
X i
i=0

r is a non-negative integer, whereas k is a natural number.

Let us use the Binet formula

n n — —_
Fo=2=P wih 2= 22 * Vg b= L8 -5
N5

We also note that ab = -1. The nth Lucas number, Ln’ is Ln =a"+ b". Then

n
2o,
=0 !
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becomes:

n
1 N ftr  iktr, 1 | p o@D _ g g piDk
_— a -b ) = —|a T -b T
"lgi=0 NCRR a -1 b -1

[P KT | oT ek g - (O _pT ek g

NE[)F +1 - 1, ]

Performing the indicated operations and again employing the Binet formula, we are ready to

give the sum of n Fibonacei numbers beginning with Fr' The sequence continues equally

spaced such that (k - 1) Fibonacci numbers are left out from any one term to the next.
Theorem 1.

n

k min(k, r)+t
D F () gy + D Flok ~ Forr * P

2T -
-~ k@{-1)4+r K )
i=1 D7 +1 - Ly

where k is any natural number and r any non-negative integer. The number t is defined

by:
¢ = €0, when r <k
- il, when r >k °

Since Flr'k vanishes for r = k, t need not be defined in this case.
At
by the
Reduction Formula: (2)
If r=71 (mod k), i.e.: r = ak +T where a is a natural number and 0< T <k,

then

ention should be drawn to the fact that we may restrict r tothe condition 0 < r <k

n n
2 Fitksr = 2. Fa+i-1)k+T
i=1 i=1
n-+a a
=2 F o 1)keT - > Fi ket *
i=1 i=1

While the restriction on T is useful for reduction purposes, it is not a necessary condition
for relationship (2).

Special Cases of Theorem 1.

We notice that the result of our summation involves an expression which combines no
more than four terms. Thus, this relationship would be quite helpful whenever n is "fairly

large." For r = 0, the special case
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n k

. -)°F, +F - F

3) E: Fki _ nk k (n+1)k

k
-1)" +1 - Lk

may merit attention.

It is evident that Theorem 1 embraces the basic elementary summation formulas of
this kind. Obviously, k = 1, r = 0 yields:

n
ZF1=Fn+Fn+1'1=Fn+2'1 ’
i=1

which is the formula we previously quoted for the sum of the first n Fibonacci numbers,

However, it is aesthetically satisfying that the summation formulas for the first n
Fibonacci numbers of odd indices and those of even indices also become special cases of our
pattern. Thus, by letting k = 2 and r = 0, we get

n
ZFZi = Fonar ~ 1
i=1

whereas r = 1 yields:

n
~ZF2i—1 = Fon -
i=1

If one relationship combining the two cases were required, Theorem 1 — for k = 2 and r =

0 or 1 — becomes:

n

) = -1F F
L F2(1_1)+r = Fonsa-a - -1 2-r  r °’
=1

or, more simply:

n
(4) Z Fz(i—1)+r = Fopar-g ¥ -1 -
-1

It may be instructive to check other cases of small "skipping numbers" k. Owing to
reduction formula (2), the condition r < k does not limit the generality of the results.
For k = 3 we obtain

n I
Y e S T
3(i-1)+r % ’

i=1
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which may also be stated as

n
F - |r - 1]
_ 3ntr-1
) 2 Faiinyer = 3 .
i=1
and, for k = 4, we have
n T
Z ¥ _ R S T -1) Fpp- Ty
4(i-1)+r 5
i=1
or, alternatively:
n
_ r+1
6) ZF4(1-—1)+r - 1:‘Zn—ZFZnH‘ +[ 2 ]
-

These equivalences, relationships (5) and (6), may easily be verified by straight sub-
stitution of the few r-values to which we are restricted. All of these formulas can, however,
readily be established either by using the Binet formula, or else, employing mathematical
induction. They were stated here merely as a matter of interest since none of them seem
too obvious,

Two further observations may be mentioned.

We might wish to impose the condition r = k on Theorem 1. Then

)5F

@ 2o Fy -

nk - Tk T Fi
¥ +1 -1

k

Clearly, the summation formula for the first n Fibonacci numbers of even subindex is a
special case of this.

It may also be of interest to note that on the basis of Theorem 1, Lk divides into all
sums of our kind, provided k is odd, i.e., the number of Fibonacci numbers ''skipped over"

in our summation is even. If this number were odd, (2 - Lk) would be a divisor of our sum.

AN EXPANSION THEOREM (Theorem 2)

But hasn't Jacobi advised us: "Man muss immer umkehren' (one must always turn
around)? Thus — having obtained summation results as expressions involving Fibonacci
numbers — we may now experiment with an inversion and pose the problem: Gan a Fibonacci
number be expanded into a series reminiscent of an expansion for the nth power of abinomial ?

Partly analogous to Theorem 1, and primarily for the sake of developing some notions,
we symbolize our Fibonacci numbers Fn as ka . where all letters representnon-negative
integers.

The proposed expansion reads:
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Theorem 2.
k-1 !
_ k- 1\ k-1-i_i _
Fn = Z( i )Fm Fm+1 Fmar-kerieg 0 (@ = km +1).
i=0

In our proof, we use mathematical induction on n. Symbolizing Theorem 2 by R(n),
we readily verify R(n) for the first few natural numbers. Now we need to show that the
correctness of R(s - 1) and of R(s) implies correctness of R(s + 1), where s represents

any natural number. This means that we investigate whether

k- 1\ k-1-i i
( i )Fm Frned [Fmrest * Frnroorie)

equals
k-1 k-1-i _i
( i )Fm Fm+1 Fm+r—k+i+2 °

However, the iterative definition of Fibonacci numbers assures the correctness of this equal-
ity and, hence, completes the proof.

As an illustration, we might wish to expand Fy; by letting m =3 and r = 2. We
assert that

which is easily verified.

Special Cases of Theorem 2,

Some special cases might be pointed to. Considering Fibonacci numbers with even

subindex, Theorem 2 reduces to:

n
5-1
Zo1).i
(8) F o= (2 ; )2 Fa (/2)+
i=0
But those of odd subindex may be expanded on the basis of
n-3
2 /n -3
- 2 i
) Fn - E( ; >2 F(9—11)/2+i :

A Corollary of Theorem 2.

We propose a corollary of expansion formula 2 (Theorem 2) which gives a prescribed
number of terms for the expansion. Let the symbol a stand for that number. In our
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condition n = km + r we stipulate that m = 1 and k = a, and we obtain:

Corollary of Theorem 2.

a-1
_ a-1
(10) Fn - Z( i >Fn+2(1—a)+i ?
i=0
where
< < D+ 1
2 = aZ= 5 .

Special Cases of the Corollary:

The following two special cases seem worth mentioning. We desire to let a be the
largest possible number.
Case 1:

If n iseven, a = n/2 is chosen. Then

n
5-1
2.1
(11) Fp = Z (2 i )Fi+2
i=0
and there are n/2 terms in the expansion.
Case 2:
If n isodd, a =n-2+1 s
n-1

2
n-1
(12) Fp = E( 2 >F1+1
i=0 i

+1
2
To illustrate, let us expand F, into a five-term series. Then n = 21. Using rela-

terms.

and the expansion has 2
tionghip (10) and letting a = 5, we have:

4

\
~ 4
Fa = ) (i)F13+i :

i=0
which is correct. For the maximum number of terms in the expansion we would designate a
as being 11 and use (12). Then

10

_ 10
Fau = Z(i)FHl ’

i=0

a relationship which can also be easily verified.
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BACK TO ANOTHER SUMMATION THEOREM (Theorem 3)

Once again, we might "invert." Our summation theorem (Theorem 1) gave us an ex-
pansion involving Fibonacci numbers as the result of the addition. Nowlet us give a summa-
tion which results in one Fibonacci number. This problem may possibly use Theorem 2 to
the best advantage.

Starting with a summation involving Fibonacci numbers of prescribed indices, can we
predict the resulting Fibonacci number? Again recalling Jacobi's advice, we reverse the ex-
pansion of a given Fibonacci number to a sum. Now designate a sum which leads to a pre-
dictable Fibonacci number. Symbolize m by u, and u+r-(@-1r)/u+1 by v. Then
r=v-1-u+k and Theorem 2 becomes:

Theorem 3.

k-1

k - 1\ k-1-i i _
Z( i )Fu FonFyai = Fen @)+
i=0

for any arbitrarily chosen natural numbers u and v. The number k may be any integer
greater than or equal to 2.

To illustrate this summation idea, we try a summation involving F, and Fy Here
welet u =4, and v= "7, and get:

k-1

k- 1\ k-1-i i
Z( i )3 5Fpy -

i=0
We predict F as our result which is correct.

5k+2

Pre-assigning the Fibonacci Number Resulting from Summation Theorem 3:

Formula 3 is a method for a summation which uses prescribed Fibonacci numbers and
predicts a Fibonacci number as the result. What about assigning the resulting Fibonacci
number without prescribing Fibonacci numbers involved in the summation?

This summation, not necessarily unique, can be had by considering two cases.

Case 1. The Fibonacci number to be attained has odd subindex n. We choose u =v

= 1, and have

k-1

k-1 ~
13) Z( i )Fi+2 = For1

i=0

Case 2. We wish to obtain a Fibonacci number of even subindex. For this purpose we

let u and v take on the values 1 and 2, respectively. Here:
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k-2

—fk -1
(14) L( i )F1+2 = Fop-

i=0

Obviously, the number of terms in these summations will be (n +1)/2 for odd sub-
indices n, and n/2 for even ones. We realize, however, that our choices for u and v
have forfeited the ability to discern the powers of Fu and FV which characterize the terms
of Theorem 3.

Pre-Assigning the Fibonacci Number Resulting from Summation Theorem 3 as well as the
Number of Terms in the Summation, and Retaining Generality.

Finally, we prescribe the resulting Fibonacci number Fn as well as k, the number
of terms in the summation. Moreover, to avoid the difficulty encountered above, exclude the
somewhat trivial cases which involve F; = Fy = 1 among the summation terms. We im-

pose the condition: u,v =2 3. Furthermore, the iterative definition of Fibonacci numbers:

1
Z bn+i = Fn+2
i=0

inherently provides a summation of two terms resulting in a Fibonacci number (even though
the summation is not of our general type). Therefore, impose the condition: k = 3. Then,
for all n2> 4k - 1; i.e., for all n > 11, we can do justice to our data by assigning appro-
priate values to u and. v such that

(15) n=@-1Du+1 +v

is satisfied. Again, no claim is made for uniqueness.
For example, to obtain F,; through a summation of three terms, the following choice
proves successful:

2

— 2\ 2-i_i ~
L(i)FS FyFgy = Fyp -

i=0
For a summation of three terms for F;5, we can already write:
2 2 2

2 \.2-i i R AT _ 2 \.2-i i _
Z(i)F3 FyFry= 2 Fy F5F5u™ Z(i)Fs Fe¥au = Ti5

i=0 i=0 i=0
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Lack of Uniqueness — Predicting the Number of Different Summations

Can you foretell the number of different summation representations of our type, each
having k terms, and leading to the same Fibonacci number Fn? Using relationship (15),
our prediction becomes:

If set T is defined by

T=%t:45t<n—3$,
then the numerosity of T, thatis, the number
n-3
(8) [+=3] -3
predicts the possible number of different summations of our type, each having k terms and

leading to the Fibonacci number Fn .

To illustrate, there will be 52 ten-term summations of our kind leading to Fgp. We

would have:
9 9 9
9\ .9-i_i ~ 9\, 9-i i _ 9\, 0-i i
2 (1) Foy FopFpy = Z<1>F53 FogFigq = Z(i)F52 FosFogu
i= i=0 i=0

ML

o\ 9. i _
i)FB FyFueai = Fs00

[Continued from page 62. ]
then Vn = Ln’ the Lucas sequence, and so (III) now gives the correct expression for (9) in
(%),

Case 2. A +B = 0. We now obtain from (II)

fx + ¢q) - f(x + cy) * Un 0

a) Cq - Cy =ZT! D7k

n=0
where Uy =0, Uy =1, and U g = PUn+1 - QUn. Thus for P =1, Q = -1, U = F
and for P =2, Q = -1, Un = Pn’ the Pell sequence. For m =1, 2, **+, we obtain
from (IV)

fx + ™) - f(x + ) o Voo e

(V) Cy - Cy - Z n! (X) °

n=0

Remarks. The same ideas in (%) show that the generating function of the moments of
the inverse operator

[Continued on page 84. ]



