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1. INTRODUCTION

Let

]

f(x) = Z anxn

n=0

be the generating function for the sequence {an}. Often one desires generating functions

which multisect the sequence {an },
00
G;(x) = z ai+m].x3, G=0,1,2 -, m - 1).

j=0

For the bisection generating functions the task is easy. Let

Hy(x2) = f(x) +2f(-x) ,
my6) = [ IR

then clearly Hy(x2) and H,(x?) contain only even powers of x so that

o0 00
Hi(x) = E 290 <" and Hy(x) = E 3041 "
n=0 n=0

are what we are looking for.

Let us illustrate this for the Fibonacci sequence. Here

[*e]

fx) = = =§ ann,
1-x - x? =
n=0

then
85
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H;(x)

1 - 3x +x2

and

o0

_1-x
Ha (%) = Z Fops1 X

_ 2
1 3X + X =0

Exercise: Find the bisection generating functions for the Lucas sequence.
Let us find the general multisecting generating functions for the Fibonacci sequence,

using the method of H. W. Gould [1] The Fibonacci sequence enjoys the Binet Form

_ozn_Bn 1 +45 _1-\5%
P aop — b=

Let f(x) = 1/(1 - x); then

n s - plEE™x)
Z an+j X = Xa - B =
0

_ 1 od gl )
Q_B<1-amx 1 - %%

d - g jod? - g™
o —p * P ——E—ﬁ_x

1- @ +g™)x + @™

P+ (DIF_x
= L in ’ (j=091’2:“')m_1)’
1- me + (-1)

since o = -1, o +f =L_, and

Exercise: Find the general multisecting generating function for the Lucas sequence.
The same technique can be used on any sequence having a Binet Form. The general
problem of multisecting a general sequence rapidly becomes very complicated according to

Riordan [2], even in the classical case.

2, COLUMN GENERATORS OF PASCAL'S TRIANGLE

The column generators of Pascal's left-justified triangle [3], [4], [5], are
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= 2
= —_— = n n 3 ® o 0
G ) = . Z(k) e kK =0,1,2, - .
1 - x) =N

We now seek generating functions which will m-sect these,

o0
Gi(m, k; x) = E (1+kk+ mn) xn+k+1, G =0,1,*,m-1).
n=0
We first cite an obvious little lemma.

() -2 ()« (1)

=1

Lemma 1.

Definition. Let Gi k(x), i=0,1,2, -, m-1, bethe m generating functions

00
_ i+ k +mn i+mn-+k
o0 = 30 (1) o

n=0
Lemma 2.
2 . m
o ) - XGi,k(X) + X Gi—l,k(x) + + X Gi—m+1,k(x)
i k+1 m :
1-x
The proof follows easily from Lemma 1.
Let
n(m-1)
(1+x+x2+---+xm'1)n= E )
Y/ m
=0

define the row elements of the m-nomial triangle. Further, let

) = k j .
fi(m,k,x)—Z(i+jm)mx, i=0,1, ,m -1,

=0

where j is such that i +jm =k(m - 1). These are multisecting polynomials for the rows
of the m-nomial triangle. Now, we can state an interesting theorem:
Theorem. For i =0,1,2, °**, m-1,
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xk+i fi(m, k; x)

G,(m,k; x) = —
i a - x) +1

Proof. Recall first that the m-nomial coefficients obey

O O Gy e (5,

where the lower arguments are non-negative and less than or equal to n(m - 1).

Clearly, for k = 0, from the definition just before Lemma 2,

i
G (& = ——, i=0,1,2, >+, m-1.
’ 1 -x
Assume now that
xk+1 fi(m,k; xm)

1

G, ® =
ik - Xm)k+

for i=0,1,2,3, ***, (m - 1). From Lemma 2,

m
XGi-l,k(X) +oeee + X Gi—m+1,k(X)

Gi,k+1(x) = m
1 -x
Thus,
m-1
k Xk+(i-s)+s+jm+1
i-s+ jm m
_ 5=0 \j=0
G’i,k+1(x) m K+2
r-x)
m-1
k k+1++jm
femnst Z i-s+jm *
_ j=0\s= m
- m k+2
1-x)
Xk+1+iz(k + 1) Jm
i+ jm m
- j=0
- m k+2
1 -x")
Xk+1+i fi (m, k; Xm)

&+2
a-x™
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This completes the induction.
The xk_l_l+1 merely position the column generators. Here the non-zero entries are

separated by m - 1 zeros. To get rid of the zeros, let

Xk+i fi (m, Kk} x)

G,(m,k; x) = ——————
i - x)k+1

for i =0,1, 2, -+, m -1, This concludes the proof of the theorem.

If we write this in the form

}:( k ) et
0 i+im)

L i+ gm kY jek+l =0
G;(m,k; x) = 2 :( k )X = 51
=0 1 -x

it emphasizes the relation of the multisection of the kth column of Pascal's triangle and the

multisection of the kth row of the m-nomial triangle.

3. A NEAT GENERATING FUNCTION

Lemma 3

This is easy to prove by starting with

(7)-
() () (R29) - (203)

11
- AN
[»]
TN o
B _ =
bl p—
] +
S P
+ o=
no [
° =
AN N——
o]
[
= BN
~—
+
=
AN
=]
[
NN
S

Apply (A) to each term on the right repeatedly.
Now let Hi(m’k; x) m-sect the kth column of Pascal's triangle (i =0, 1, 2, **-,
m - 1); then, using Lemma 3, it follows that

Lemma 4
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The results using the method of Polya for small m and i seem to indicate the follow-
ing [3]

Theorem. The generating functions for the risingdiagonal sums of the rows of Pascal's
triangle i +jm (all other rows are deleted) are given by

a + x)i

__IYI’ i=0,1,---,m—1.
1 - x(1 +x)

H, (x) =

Exercise: Show that

m-1
E lei(xm) = ———1————m
r 1 -x(1+x)

This is a necessary condition which now makes the theorem plausible. These are the
generalized Fibonacci numbers obtained as rising diagonal sums from Pascal's triangle, be-
ginning in the left-most column and going over 1 andup m 3 . The theorem is proved by

careful examination of its meaning with regards to Pascal's triangle as follows:

n

. 0 ©
1+ x' ZE:'H mn+i:§:§: m@h - j) +i\.n
1—x(1+x)m s ( j )X ,

n=0 n=0 j=0

Recall that (E) =0 if 0sns=k
ILLUSTRATION
n=0 x01+xM=14+x
n =1 xt1+ x? = X + 3x% + 3x® + xt
n =2 x2(1+ x4 = x2 + 5x3 + 10x? + 10x® + 5x8 + xT
n =3 x3(1 + x5t = %+ 7xt 4+ 21x5 + -
Sum: 1+ 2% + 4x2 +9x% + 19x4 + -

Here, m = 2 and i = 1. Now, write aleft-justified Pascal's triangle. Form the se-
quence of sums of elements found by beginning in the left-most column and proceeding right
one and up two throughout the array: 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, -+-. Notice that the
coefficients of successive powers of x give every other term in that sequence.

The general problem of finding generating functions which multisect the column gener-
ators of Pascal's triangle has been solved by Nilson [6], although interpretation of the num-

erator polynomial coefficients has not been achieved as in our last few theorems.
[Continued on page 104. ]



