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where Sy is the nth triangular-square number.
Likewise, we can compute a formula for the nth triangular-pentagonal number. The

result is

_ 2 - N3)(97 + 5683)" + (2 + N3)(97 - 56§3)" - 4
n 48 ] ‘

S

This agrees with a result recently published by W. Sierpir{ski [4].
I am thankful to Dr. D. W. Bushaw, whose suggestions and encouragement made the

writing of this paper possible.
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We now note that for Case 2, where A +B = 0, Eg. (VH) does not exist for t =0, and
hence there is no inverse operator m L Thus, a sufficient condition for M1 (see () to
exististhat A +B # 0, i.e., Casel., For A +B # 0, one readily finds that

-A/B) :

Many more identities can be quoted. Indeed, for m, n = 0, 1, ***, one has

C1

* k
(VIII) (A -+ B)mk = (CZ - 01) Hk <m
where H (x|)) is the Eulerian polynomial cited in (¥).
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