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Then in terms of the Riemann Zeta function,
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However, the zeta function can be analytically continued for Re(s) < 1 and for negative in-
tegers it is given by [2]

Y-2m) = 0, 0 -2m) = (DB /@m), m =1,2 8 ",
0 = -1/2 (Bm are the Bernoulli numbers).
Now letting s = -1 above, gives the valid particular solution
C, = (1+2+3+--++n -1 - {-1).
Since the constant ((-1) satisfies the homogeneous equation, it can be deleted.
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[Continued from page 162. |

ERRATA
Please make the following correction to "A New Greatest Common Divisor Propertyof the
Binomial Coefficients,' appearing on p. 579, Vol. 10, No. 6, Dec. 1972:
On page 584, last equation, for

n+n n+a

k+a> read (k+a)'
In "Some Combinatorial Identities of Bruckman,' appearing on page 613 of the same issue,
please make the following correction.

On the right-hand side of Eq. (12), p. 615, for

_._& read 2k
2k + 1 2k + 1
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