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It is well known that if
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then the number of solutions to the congruence x? = 1 (mod N) is 2% if £ =0 or 1, ZS'"1
if £ = 2, 2572 jp g =3 [2, p. 191]. 1In this note, we give a group-theoretical proof of
this fact. To fix the idea, let
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Hence Ni = N, p; > and the Ni are relatively prime, identifying 2 with p,.
Lemma. Let kj, ky, **+, kg be integers such that koNg + kyNy + -+ + kSNS = 1, let

ey = 1, or =1 + some power of 2, ei =41 for 1=i= s, andlet
= + 4 see 4 .
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Then for any choice of e 0=i=s, (M,N) =1,

Proof. Since pile for i # j and pi-]-Ni, p; must not divide ki’ otherwise p;
would divide 1. Suppose (M,N) # 1, then some piIM, but this P, must then divide
eikiNi’ which is impossible.

Theorem. The number of solutions to the congruence x% = 1 (mod N) is 25 if g =
0 or 1, 25" if ¢ =2, and 252 if ¢ =3,

Proof. Let <c> be a cyclic group of order N. First notice that a nontrivial auto-
morphism A of <c> takes c to cX, where (x,N) = 1; if ) is of order 2, then x?= 1
(mod N). Moreover, since every solution x, of x* = 1 (mod N) is primeto N, Alc) = X0
is an automorphism of order 2. Since the automorphism group of a cyclic group is abelian,
the set of automorphisms of order 2 form a subgroup. The order of this subgroup is the
number of solutions to the congruence x* = 1 (mod N).

1 and is characteristic in <c>. An auto-
or ¢ for 1=i=g since x* = 1 (mod
pn) has only two solutions +1 for an odd prime p. As for the 2-Sylow subgroup <cN° >, if
its order is 2, it admits only the identity automorphism; if its order is 4, it admits 2 auto-

; '
No , ¢™No, ifits order is 2°, ¢ =3, it admits 4

Each Sylow pi—subgroup is generated by c¢

morphism ) of order 2 must take c Tgo ¢l

morphisms, namely M oMo ang ¢
automorphisms, with the other two being
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We have thus seenthat an automorphism M of order 2 eitherleaves aSylow pi—subgroup
elementwise fixed or takes its elements to their inverses or, in case of the Sylow 2-subgroup
of order 2’Z = 8, takes the elements to their 2!2_1 + 1 powers.

Conversely, mappings that act on one Sylow subgroup as above and leave all others
elementwise fixed are automorphisms of order 2 and so are their compositions. In fact,

let X be such a mapping,

Ae) = )\(CkoN0+- . ‘+kSNS) _ }\(ckONO))\(cklNl) . A(CkSNS) _ (ceokoNo )(celklNi)

Ve (ceSkSNS) - CM ,

clearly (M,N) = 1 by the lemma and A is an automorphism of order 2.
Since the group of automorphisms of order 2 is a direct product of the groups of auto-
morphisms of order 2 of its Sylow subgroups, the conclusion of the theorem is established.
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ERRATA

Please make the following corrections on errors occurring in "The Autobiography ‘of
Leonardo Pisa.no," appearing on page 99, Volume 11, No. 1, February 1973:
Page 100, line 13 — The fourth word in this line should be ""quedam, ' not "quedem. "
Page 101, line 11 — Please underline ""per qualche giorno. "
line 5 from bottom — Please underline the last word, 'in. "
Page 102, line 6 — Please change the last underscored word from 'posta' to "postea."

line 21 — Please underline the words "disputationis conflictum. "

Page 103, line 1 — Please change the word ''reconing' to read "'reckoning. "
line 20 — Please change the last word on this line to read '"ynd .
line 33 — Please change the next to last word to read "a793."
line 5 from bottom — Please read the sixth from last word as " (3. "

Page 104, line 1 — Please underline the word "algorismum. "

[Continued on page 168. ]



